Challenges and potential improvements of the sustainability in telco networks

Michael Düser | Berlin | September 2024

GROUP TECHNOLOGY

public

Telco networks facing multiple challenges to ensure climate neutrality & resilience

Managing a highly distributed infrastructure with mix of equipment for different services & requirements

- All sites providing floor space, energy, cooling, connectivity
- Continuously adapted to conversion from phone to IP based service company
- IT centricity cloudification, virtualization, disaggregation as main drivers of change

Climate change imposes new threats and risks

- Flooding, storms increase risk of service disruption
- Heat waves challenge established cooling models
- Not considered in network design

Turning from consumer to active participant in energy markets

- > Energy \rightarrow heat \rightarrow reuse
- Decentralization of energy production, storage, consumption

Greenhouse Gas emissions segmented by scope – measured in CO_2e^1

public | M. Düser | GROUP TECHNOLOGY | Sustainability of networks | Sep. 2024

DT Carbon Footprint & Targets

Stable energy consumption across the entire infrastructure based on continuous optimization

Long-term stable energy consumption ...

Energy* consumption per region, TWh

... with efficiency levers offsetting additional demands

- We will retire legacy platforms¹ to counterbalance other trends such as rise in data traffic, network densification & rollout of more active network components
- In addition, efficiency from ...
 - Network measures & modernization
 - Introduction of FTTH and potential copper retirement
 - Energy efficient data centers
 - In addition, innovation in packaging, materials, and decentral energy production

Where do we spend our energy?

*here: electricity

Telecommunications networks – highly distributed number of energy consumers with varying granularity

Site classification: Example Telekom Germany

	Туре	No#	Power (in kW)	Energy (GWh/a)
Indoor - site	Core Nodes	20	~ 1000	~140
	Aggregation nodes	900	< 100	~620
	Access node	6982	< 10	~350
Outdoor -site	Outdoor cabinet	177000	< 0,5	~350*1
	Cellular base station	33000	< 5	~950*
Total				~2450

* estimation by author

Where and how to save energy?

Different measures how to save energy

We identified three clusters of efficiency levers to address energy efficiency

RETIRE

Recently legacy voice (PSTN), near-term future legacy transport (SDH), long-term switch to fixed access disaggregation and potential copper platform retirement

MODERNIZE

...after accelerated Fiber rollout and Technology updates, e.g., rectifiers, 3G frequency re-use for 4G/5G or Cloud transformation in NT/IT

Network measures, including site sharing & AI steering ORAN based approaches

Significant reduction achieved via legacy retirement but one-off effect

Retirement boosts electricity savings...

...no short-term lever

 Image: PSTN Retirement

 Completed in 2022

SDH Retirement To be completed in 2025

Potential future levers include...

Copper to fiber migration (Cu2F)

Long term chance but focus currently on FTTH rollout to build proper coverage

Access disaggregation

Long term effect to be evaluated

So what:

- » 'One-off' effect
- Needs strategic decision and significant lead time (~10years)

RETIRE

 Operationalization challenging and requires migration

Migration from copper to more efficient fiber potential long-term lever

MODERNIZE

RETIRE

FTTH most efficient fixed access technology...

...but migration requires fiber coverage Increase of FTTH adoption

- Significantly adding FTTH homes passed
 - » c. 2.5...3.0 mn p.a. in GER
- Increase take-up rates in FTTH areas (from "homes passed" to "subscriber"
 - » Requires additional effort and resources
- Government claims to offer FTTH to every customer in GER by 2030

Develop concepts to retire copper

- Requires full FTTH availability in envisaged retirement areas
- » Customer migration strategies ranging from natural to forced migration
- » Lead time typically ranging from few up to 10+ years to complete migration

So what:

- Needs migration of customers in FTTH areas (incl. Wholesale)
- » Gradual savings starting with customer migration ending with full dismantling of cabinetd etc. ('Parallelbetrieb' until then)
- Maximum energy saving potential requires full swap (DE earliest 203x)

Innovative saving features based on dynamic Al steering soon ready for implementation

Innovative features increase saving potential... Frequency bands (schematic) 3.6 GH ON (2.1 - 2.6 GHz ON 1.5 – 1.8 GHz ON H700 – 900 Mhz 0.5 km 1.5 km 2.0 km 5.0 km coverage -X% 0:00 **Dynamic AI steering***

...but need implementation push Static capacity-layer switch-off

- Live in all EU NatCos and GER
- Saving: up to 10% of mobile access network consumption
- Site-individual

Novel dynamic forecast and temporary reduction schemes

Requirements for operationalization:

Scale field trials and MVPs to **>>** country-wide solutions

INNOVATE

- **Balance** customer **>>** experience vs energy savings
- **Ensure** legal/regulatory **>>** obligations
- Assess impact on **>>** benchmark results and network tests

Facts:

- Typical power consumption of a mobile site is 1-4 kW •
- More active frequencies = the more energy consumption •

Architectural options for ORAN enabled vBBU

schematic

INNOVATE

ORAN based optimization of radio network architecture & topology at scale

Real based optimization exercise to minimize cost by clustering of CU/DU and exploiting pooling gains

- » Scale from single base station to >1000 base stations
- » **Balance** pooling gains against transport cost
- Assess impact of different cluster sizes, cost variations etc.

Thank you!

GROUP TECHNOLOGY

Contact

Michael Düser

Functional Strategy Manager +49 171 564 3339 michael.dueser@telekom.de

public | M. Düser | GROUP TECHNOLOGY | Sustainability of networks | Sep. 2024