Al Botany: Open RAN

H. Lehmann | T-LABS | 10.09.2024

GROUP TECHNOLOGY

Agenda

O1 Phenomenological Modelling of AI Capabilities
O2 Why & How
O3 Scales
O4 Overarching Problems

Phenomenological Modelling of AI Capabilities

Botany:

- describe appearances & phenomena
- cluster & relate
- no causal understanding

Al in (radio access) networks:

- Is it possible and sensible to develop an analogous approach?
- Lots of apparent reasons not to:
 - Al does not grow like plants...
 - the system which hosts the AI is not like nature (living, evolving, self-organizing)...
 - give up on all the exact math which is out there...
 - ...

Why we yet try it: Some Motivation

Identify description classes:

- resource consumption descriptors
- system response descriptors
 - borrow from physics:

$$x(t) = \int_{-\infty}^t dt' \stackrel{ extsf{Al}}{\chi(t-t')} h(t') + \cdots$$
 .

borrow from control theory:

Resource Consumption Modelling

computational weight

• data sets – loci, volume and flows

 $cw = \{cw_{training}, cw_{execution}\} with$ $cw_{x} = \{t_{x}, compute load_{x}\}.$

 $\mathbf{x}_{data \, set}^{(gen)}$, $\mathbf{x}_{data \, set}^{(stor)}$ $\mathbf{V}_{data \, set}$ and $\mathbf{v}_{data \, set}$.

Summary description of computational effort and related data logistics per AI capability.

Be aware of some "botanical blurring" – i.e. the principal limits of phenomenology:

- algorithm variations may result in swifter convergence and a decreased $t_{training}$
- tuning of the training phase may bring down the required compute load_{training}.
- *t*_{execution} will alter with configuration specifics
- algorithm advances may bring down the required $\mathbf{V}_{\text{data set}}$

System Response Modelling

• induced latency

 $\mathbf{t}_{data \, flow} = \max\{ t_{data \, flow}^{(1)}, t_{data \, flow}^{(2)}, \dots, t_{data \, flow}^{(n)} \}$

This aggregate latency is accumulated over the consecutive architecture elements a data set item traverses. As data sets may be composed from different $\mathbf{x}_{\text{data set}}^{(\text{gen})}$, only the maximum is relevant.

"Botanical blurring":

stochastics of individual forwarding steps per network elements

System Response Modelling

• action space and reach

 $\{\mathbf{x}_{action}^{(i)}\} = \{\mathbf{x}_{action direct}^{(i)}, \mathbf{x}_{action indirect}^{(i)}\}$

The subspace of the network affected by a specific capability (i).

First, be clear on space concept:

- disaggregation space (relating to the ORAN functional architecture),
- real space which relates the network elements to geo-positions attributed with, e.g., territory characteristics or user number statistics, and
- **network space** (the mapping of one of the above on the other).

Very hard to quantify; range from $\{\mathbf{x}_{action}^{(i)}\} = \emptyset$ to the entire network.

Lehmann | T-Labs | BOWW 24

time

٠

• time

Time-ordering of the relevant AI capabilities in the network

Separation of processes along physically, or conventionally given time scales drastically simplifies the quantification of the response function

• time

Overarching Problems

Overarching Problems: Holistic Energy Management

- function approximation (energy consumption on load) ①
- dApp 2
- energy mgmt. per virtualization (3)

- checking the formalism:
 - $\mathbf{x}_{data \, set}^{(gen)}$ as shown
 - dedicated xApp (④) with
 - $\{\mathbf{x}_{action}^{(i)}\} \rightarrow \text{O-RU} \text{ (map on real space)}$
 - cw moderate, V_{data set} low, t_{data flow} nearRT
 - dedicated rApp (5) (reinforcement learning) with
 - $\{\mathbf{x}_{action}^{(j)}\} \rightarrow \text{O-RU} \text{ (map on real space)}$
 - cw high, V_{data set} mod, t_{data flow} mobility scale
 - and auxiliary AI capability traffic forecast (6)
 - and conflict detection / mitigation /resolution (7)

Summing Up

Al in future networks is a heterogeneous ensemble.

Vendors think functions, operators think systems.

Thanks to:

Martin Stahn

Matthias Weh

Richard Weiler