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(COLLABORATIVE) EDGE LEARNING AND
INFERENCE



COLLABORATIVE EDGE INFERENCE

Device-Edge Co-Inference: device and edge server cooperate to perform a certain task

= Efficiency: Transmit only task-relevant information — reduced complexity,
communication overhead, energy consumption

= Trade-off: Complexity vs. performance (complexity is related to energy
consumption)

= Includes split inference and semantic offloading as special cases
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CLOSELY RELATED TO “SEMANTIC COMMUNICATION”

Reduction in communication
overhead and energy consumption
by extracting/transmitting only
“task-relevant information”
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SEMANTIC COMMUNICATION FOR EDGE INTELLIGENCE

IEEE loT Magazine: Special Issue on Task-Oriented Communication for loT
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cation solutions that tailor resource consumption to the task at hand. Despite the general intuition that semantic communication may contribute
to more efficient system design, there have been only a few concrete attempts to implement aspects of it in practice. To help bridge this gap, in
this paper, we revisit the theoretical foundations of semantic communication and address the possible implications on the protocol and system
design. The focus is on two perspectives of semantic communication: (i) a goal-oriented perspective, which unifies aspects of traffic generation,
communication, and control, with emphasis on the definition of appropriate semantic-aware metrics, and (i) a semantic operability perspective,
which extends the notion of data exchange through standardized interfaces (interoperability), to include the meaning or, more generally, the On-Device
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EXAMPLE 1:

(NEUROMORPHIC) EDGE INFERENCE FOR
HUMAN-ROBOT INTERACTION

Neuromorphic Wireless Device-Edge Co-inference via the Directed Information Bottleneck
Y. Ke, Z. Utkovski, M. Heshmati, O. Simeone, J. Dommel, and S. Stanczak, ACM ICONS 2024



(SEMANTIC-AWARE) NEUROMORPHIC WIRELESS EDGE
INFERENCE

Spiking Neural Networks (SNNs) for Edge Intelligence
« network of dynamic spiking neurons
« communicate and process information with the timings of spikes

mimic the operation of biological neurons

energy-efficient (~pJ per spike)

low latency & event-based processing
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DEVICE-EDGE CO-INFERENCE VIA THE

DIRECTED INFORMATION BOTTLENECK
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TRANSMITTER AND WIRELESS CHANNEL
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SEMANTIC VARIATIONAL DIRECTED
INFORMATION BOTTLENECK (S-VDIB)

Design Criterion
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Neuromorphic Wireless Device-Edge Co-inference via the Directed Information Bottleneck
Y. Ke, Z. Utkovski, M. Heshmati, O. Simeone, J. Dommel, and S. Stanczak, ACM ICONS 2024



SEMANTIC VARIATIONAL DIRECTED
INFORMATION BOTTLENECK (S-VDIB)

Semantic Variational Directed Information Bottleneck (S-VDIB)
Lvprs(¢,0) =

. Py (Z||)

ANN — Gradient estimation via (standard) Backpropagation
VoLypis (¢,0) = Ep(a.y)Ep, (2112) [Vole (2, y)]

SNN — Gradient estimation via Score Function Estimator
VeLyvpis (¢, 0) =

Ep(@.y) Epg (2]]) [(59(2, y) + Bly (2, :B))Vqs logpqs(ﬁ'llw)]



SIMULATION RESULTS

. MNIST-DVS . N-MNIST
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» Test error rate as a function of the SNR per bit, Eb/NO, for the two standard datasets MNIST-
DVS (left) and N-MNIST (right).

« Comparison perfomed with Separate Source Channel Coding + Classifier and with Joint
Source and Channel Coding + Classifier
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EXAMPLE 2:

COLLABORATIVE INFERENCE FOR
INTEGRATED SENSING AND
COMMUNICATION



COLLABORATIVE INFERENCE FOR RADIO SENSING

A. Fazli, Z. Utkovski, E. Tohidi, S.
Stanczak, “A Framework for
ISAC-related reporting,” in
preparation, 2025.
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COLLABORATIVE INFERENCE FOR RADIO SENSING

Ground Truth:
walls with two objects Pred: L = 64 Pred: L = 256

Pred: L = 1024

0 10 20 30
Angle bin
Ground Truth:

walls with one object Pred: L = 64 Pred: L = 256 Pred: L = 1024
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0 10 20 30
Angle bin

A. Fazli, Z. Utkovski, E. Tohidi, S.
Stanczak, “A Framework for
ISAC-related reporting,” in
preparation, 2025.



(NEUROMORPHIC) COLLABORATIVE INFERENCE FOR RADIO

SENSING

= Neuromorphic device-edge co-inference for
radio sensing in networked robotics

= Device (robot) generates range-angle maps
and uses Spiking Neural Networks (SNNs)
with the Spiking-Locally Competitive
Algorithm (S-LCA) for sparse representation

= Edge server performs scatterer clustering,
extended target detection, and tracking
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M. Heshmati, Z. Utkovski, K. Turbic, Y. Ke, S. Wittig, R. Askar, M. Peter and S. Stanczak, “Split-Inference Architecture for Device-Centric
Radio Sensing in a Networked Robotics Scenario”, accepted at IEEE International Conference on Machine Learning for Communication

and Networking (IEEE ICMLCN), 2025.
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EXAMPLE 3:

COLLABORATIVE INFERENCE FOR
MEDICAL ROBOTICS



MEDICAL

APPLICATION:
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COLLABORATIVE INFERENCE FOR MEDICAL ROBOTICS
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Hyper-prior Feature

Decoder (internal spatial
Rec. - Restored latent  Quantization error lependencies)
e B = L B representation e X
|mage o E X o E X o E X - & E ~
= =4 = =4 = =4 — yi,y F. & 15 —
fq—Ed—EEd—Eq—ﬁgd—Ed—Egd—E: ’“!3 Z Ed—ﬁgd—g:
2 |88 2 |E® Z |2E S 1] 2 =8 S 2
=) = = I N Y . P
; ; ; T leLh{]narv D: ; =
— — —_— -5} . —_—
i i Entropy AD 4-- E "E "u'; ﬂ ! AD «— - E "g
b¥.. B, o degoders w &2 32— £ 2
2 X7 %0 PR R e R TR T Bits | S *é 2. i-th slice of the decoded bis | S &
i i l - A= = : .
' e 20 8 E quantized AE “H S
2 |23 =2 |zx =2 |gx N x C, represenﬂatloa x Z
= =) =) =] =) =] ~ Q L_._: __________ g o~ Q —
S |E4 & |E% & |54 o y 4 y g 5 -  z 4
X —— E—h%g—b E—P%E—b E—P%E—PE > §—S 5— 2
= |[§® B |§™ E [§F 8 E |g® =3
Input = = = U = U
image = = S F 2 F S |&
— — Quantization ~_ Side
Latent information

Encoder

representation
epresentatio Entropy encoder

Quantized representation

Distribution para
meter of y/z



ARCHITECTURAL IMPLICATIONS AND
IMPLICATIONS ON PROTOCOLS



SEMANTIC COMMUNICATION AS AN EXTENSION TO THE
AI-NATIVE RADIO INTERFACE FRAMEWORK IN 3GPP
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COMPLEXITY OF AI/ML AND (6G) SIGNAL PROCESSING IN RAN
IS DOMINATED BY VECTOR-MATRIX MULTIPLICATION

SpEEEh_. BN50 . HEN -]
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Source: S. Shukla et al. “A Scalable Multi-TeraOPS Core for Al Training and Inference,” IEEE Solid-State Circuits Letters.



CELLULAR 2.0: ENABLING PERFORMANCE-GUARANTEED
NETWORKED COMPUTING
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J. Kim, B. Shim, and K. Lee, "Towards Enabling Performance-Guaranteed Networking in Next-Generation Cellular Networks,"
IEEE Communications Magazine, vol. 61, no. 1, pp.32-37, Jan. 2023

KYUNGHAN LEE (SEOUL NATIONAL UNIVERSITY): SYMPOSIUM ON 6G COMMUNICATIONS 2024, JEJU

CELLULAR NETWORK SHOULD BE NO MORE A BLACKBOX TO APPLICATIONS!



KEY PERFORMANCE METRICS FOR EDGE LEARNING &
INFERENCE (from 6G-XCEL)

KPMs for AI/ML capabilities in relation to | Description

edge learning and inference

Training complexity Number of real-valued operations needed for training an Al model until
convergence (assuming fixed input data distribution).

Inference complexity Number of real-valued operations needed for pre-, post-processing, and inference

in an Al model. Can also be characterized through the number of real-valued
model parameters.

AV LY BTG Wedo g i IV [ (- L i R\ 1 - .M Overhead incurred for assistance information, data collection, model
delivery/transfer, and other required signalling.

Model generalization capability A model’s ability to perform under unseen scenarios/data distributions.

Al/ML performance Metrics to access the performance of Al/ML models such as, e.g.,

- accuracy, recall, false-positives rate and precision for classification tasks

- MSE, RMSE for regression tasks.

Inference latency Time delay between the data input and the inference output (including over-the-air
transmission in split-inference scenarios).

6G-XCEL Deliverable 2.2: Comprehensive analysis of benefits and implications of the Al/ML-based network control deployment
(DTAG, HHI)



FUNCTIONAL ARCHITECTURE FOR EDGE INFERENCE
(AI ON RAN) TRAINING SERVER INFERFNCESERVER
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MAPPING TO 3GPP: STARTING POINT - Al / ML FOR MEDIA
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Figure: An example of a basic architecture for split inferences between the UE and the network, as
described in 3GPP TR 26.927. The media data source originates from the UE, the first part of the inference
is performed in the UE, the second part in the network.



Al FOR RAN OR RAN FOR AI?
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