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The Promise of 6G...

* 6G are expected to revolutionize human and machine communications.

» Should deliver unprecedented capacity, low latency, energy efficiency, and cognitive capabilities
to manage vast radio resources.
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Al for Wireless Networks

4 . )
Input
data,
measurements
\_ _J

algorithm

output
decision

« signals theory
« optimization theory

Fourier analyses
signal processing
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Al for Wireless Networks

* channel * resource
estimation allocation
- digital pre- » scheduling
distortion e link

» channel adaptation
resource .«
optimisation

* Autoencoder

Protocols design and engineering?

« Alas a
service

« digital twins
 predictive
maintenance

* congestion

* mobility
management

Rcce

Mobile
Communications
and Computing




Challenges

explainability (technical depth and dependencies)
unstable decisions in unseen situations
efficient data collection and learning

energy and computational efficiency

Cost $
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This Talk...

will introduce
* Multi-Agent DRL for MAC Protocol Synthesis and Optimization

 LLM based Resource Block Allocation in Multi-Cell Networks

... and discuss the trade-offs of automation, flexibility and efficiency.
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Background

* 6G networks will offer a variety of services beyond connectivity

In licensed and unlicensed bands.

through coexistence of different access technologies.

addressing a wide spectrum of service requirements.

This calls for flexibility and adaptivity in the radio access protocols

Can ML assist the design of reconfigurable protocols?

Here we study a distributed MARL-based Medium Access Control (MAC)
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Advancement Beyond State-of-the-Art

* In heterogeneous networks, it's desirable to
« adapt the algorithm and protocols parameters on-the-fly according to the radio environment,
network loads, and application requirements.
« compose/select the right algorithm and parameter depending on the use case.
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Advancement Beyond State-of-the-Art

 We design a MARL-driven MAC Protocol framework:

adopts a fully distributed protocol design approach

optimizes several MAC parameters and functions simultaneously and generates new policies.
deploys intelligent agents directly on network devices, rather than embedding fixed protocols
agents autonomously synthesize, optimize, and dynamically adapt MAC protocols based on local
observations, and radio and traffic conditions.

10
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Multi-Agent Deep Reinforcement Learning (MADRL) framework

 enables fully distributed learning and decision-making by network nodes.
* Modular MAC protocol synthesis using ML-driven policies.

i ,
MAC Protocols Blocks : %
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i ' Training
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i LBT: Listen Before Talk RS: Reservation signal MCOT: Maximum Channel Occupancy Time CS: Carrier Sensing mCW: minimum Contention Windows BEB: Binary Exponentially Backoff
i EIED: Exponential Increased Exponential Decreased ED: Energy Detection
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Multi-Agent Deep Reinforcement Learning (MADRL) framework

 enables fully distributed learning and decision-making by network nodes.
* Modular MAC protocol synthesis using ML-driven policies.

on Selected Criteria

Action parameter | Values Range Standard value \
ai| Sensing Slot Size | {0, 1,2, ..., 20} 9 us AN
as| Backoff type Off, EDID, BEB AN
BEB, Constant N
as| Minimum CW {0, 1, 2, ..., 63} 15 N
a4 MCOT [ms] {0,1,2,..,10} | 2,3.5,8 NGB S TR 2 S S B T = ;
as| MCS {0, 1, 2, ..., 28} | Auto. Rate Control : :
1 E
- gd{)[“s][ B §09’01’ 3’9"" 225)} 1662 B i MAC Protocols Blocks ; Synthesized
7| Th U, - g ey T - . 5 ﬁ
as] T, [dBm] 10, 11,..,30} | 23dBm | _-- - i Protocol
! 1
@ Environments Characteristics Input DRL Agent
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1 | I
|

i LBT: Listen Before Talk RS: Reservation signal MCOT: Maximum Channel Occupancy Time CS: Carrier Sensing mCW: minimum Contention Windows BEB: Binary Exponentially Backoff
i EIED: Exponential Increased Exponential Decreased ED: Energy Detection
1
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Multi-Agent Deep Reinforcement Learning (MADRL) framework

 enables fully distributed learning and decision-making by network nodes.
* Modular MAC protocol synthesis using ML-driven policies.

Action parameter

Values Range

Standard value

ai| Sensing Slot Size | {0, 1, 2, ..., 20} 9 us AN
a2| Backoff type Off, EDID, BEB AN
BEB, Constant N
as| Minimum CW {0, 1,2, ..., 63} 15 p
as| MCOT [ms] {0, 1, 2, ..., 10} 2,3,5,8 T "i
as| MCS {0, 1, 2, ..., 28} Auto. Rate Control : :
ae| T [ps) {0, 1,2,...,20} | 16 ; MAC Protocols Blocks : Synthesized
a7 ED7y, [dBm] {90, -89, ...,-60] | -62 dBm : l — Protocol
as| Ty [dBm] {10, 11, ..., 30] | 23 dBm __-P- !
- 5 :
PRl Environments Characteristics | Input DRL Agent
T - ] Training
Number of Network , Traffic rate and type, -7 B ! e T Mt !
RSSI¢, RSSIy, Throughput, delay, Airtime Jtaal ol Applications Requirements ' e :
- : bp q ; ' Reward Calculation Based 1l n S"B !
! 5 : on Selected Criteria il !
___________________________ : |

1

i LBT: Listen Before Talk RS: Reservation signal
i EIED: Exponential Increased Exponential Decreased

1

MCOQOT: Maximum Channel Occupancy Time mCW: minimum Contention Windows

ED: Energy Detection

CS: Carrier Sensing BEB: Binary Exponentially Backoff
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Learning approach

Distributed Training and Distributed Execution (DTDE)
Partial Observation Markov decision process

0, =< Current Actiony, NNy, TRy, RSSI, RSSI;,
throughput_x\delay_x\Airtime_x >| V gnb,, x € gNBs in the sensing range}>

Ay =< MCOTy, Powery, MCSy, EDyyg,, defer timey
Backof ftypex, CWinin,.Sensing slot duration,>

Connection — & ——
Interference —2—

O 0 O

STA STA STA

 In DTDE, each agent broadcasts its throughput,
traffic rate, and airtime to the nodes within its range.

Centralized Training Centralized Execution (CTCE)

Markov Decision Process

0, =< Current Action, NN, TR, RSSI, RSSI;,
throughput\delay\Airtime >|V gnb,,x € {1, ..., NN}>

A, =< MCOT, Power, MCS, EDryr, defer time,
Backof fivpe, CWinin,Sensing slot duration> >|V gnb,,x € {1, ..., NN}>

AFC Server

<01uA1; = &<031A3: R3 >
b u oNPs

‘XD XXD><D

STA STA
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Learning approach

- Reward for each agent:

Th;

— = —d tair,i

» Proximal Policy Optimization (PPO)

Table 1.Taining and Environment Parameters

Number of networks (NN) 1-6

Operating Frequency, Bandwidth 6 GHz, 20 MHz

Traffic characteristic (TR): Poisson | A =[ 0 - 3000]
and AR/VR with arrival rates \

Packet size 1500

Learning Rate, Optimizer 0.001, Adam

Policy RNN (2 layers of 256)
batch size, M 1000

Step size, Episode duration 0.1 s,50s

o 0.3

Th;: Mean normalized aggregated downlink throughput of i,, network

A; : Normalized traffic arrival rate
tqir ;- NOrmalized airtime of i,;, gNB
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Learning Convergence

20, |
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6 '[ —CTCE: Trained for 77 hours (wall clock)

DTDE: Trained for 109 hours (wall clock)
0 1000 2000 3000 4000 5000

Training steps [in thousands|

DTDE achieves slightly lower mean reward compared to centralized learning, due to lack of full control and knowledge
The simulation and training processes were conducted on a server with 2 NVIDIAA30 GPU units and 64 CPU cores.
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Performance Analyses

AR/VR Traffic-Poisson Traffic 25 30
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Standard NR-U CTCE Standard NR-U CTCE DTDE Standard NR-U CTCE DTDE

Low Traffic Scenario High Traffic Scenario Random Traffic Scenario
(10 to 500 packets/sec) (1000 to 3000 packets/sec) (1000 to 3000 packets/sec)

The results obtained for six networks within the environment.

Performance under diverse traffic scenarios (Poisson, AR/VR).

MADRL improves throughput by at least 10% compared to standard 5G NR-U.

Performance closely matches centralized learning approaches despite decentralized, partial observability.
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Performance Analyses

2 500
15 ; 400 e a & :
) [] E300 .
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o) I 5 2U0°
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Standard NR-U CTCE DTDE ! Standard NR-U CT‘CE DTDE
Low Traffic Scenario High Traffic Scenario
(10 to 500 packets/sec) (1000 to 3000 packets/sec)

Substantial reduction in end-to-end packet delay.
* Reduced carrier-sensing overhead contributes to lower latency.

500

400 -

E300

=200 -

100

AN

[ | [
1 I i
! 1
1

Standard NR-U CTCE DTDE

Random Traffic Scenario
(1000 to 3000 packets/sec)

* Power control and energy detection thresholds dynamically adjusted by each node minimize interference.
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Concluding Remarks 1

DLR agents autonomously synthesize, optimize, and dynamically adapt MAC protocols
based on local observations and conditions.

The synthesis protocols demonstrate notable enhancements in throughput and latency
reduction.

Future work:

Analyzing distributed learning approaches for enhanced adaptability in heterogeneous
environments 5G NR/Wi-Fi.

Implementing on the real hardware.

Explore accelration

19
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Dissemination and Open-Source Availability

« Paper Reference:
N. Keshtiarast, O. Renaldi and M. Petrova, "Wireless MAC Protocol Synthesis and Optimization With Multi-Agent
Distributed Reinforcement Learning," in IEEE Networking Letters, vol. 6, no. 4, pp. 242-246, Dec. 2024, doi:
10.1109/LNET.2024.3503289.

* Open-Source Implementation:

» Applicable for multi agent optimizing for single or multiple MAC/PHY layer parameters.
« Supports diverse technologies: 5G NR, 5G NR-U, Wi-Fi (IEEE 802.11 protocols)
« Highly adaptable to various application scenarios and network environments.

v

Dummy Environment in RLIib

3

- ns3-ai gym Environment

-------------------- - Shared memory

* ns-3

| https://github.com/navid-keshtiarast/ML-Framework-

| for-NR-U-MAC-Protocol-Design-Multi-agent

Vectorized Environment
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LLMs for Resource Block Assignment with QoS
Constraints in OFDMA Multi-Cell (Open) RAN




Can Large Language Models (LLMs) help?

task > LLM > output
expressed in in text, code, script,
human language and configuration

22
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what is it? huge neural networks
trained on large corpus of text

LLM

how does it work? given text input,
predict next sequence of words

23
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Can Large Language Models (LLMs) help?

> LM

task

expressed in
human language

> output
in text, code, script,
and configuration

4 )
OpenAl oo
ChatGPT4.0 % LLaMA 4 Gemin
\ Claude 3 /
Example of LLMs
2 RWTH




Can Large Language Models (LLMs) help?

task >  LLM > output
expressed in in text, code, script,
human language and configuration

knowledgeable

“LLMs can generate coherent,
contextually relevant text based on > é fast learner
AN l /

prompts.”

-( {3 creative

© Dejan Kosti¢
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Can LLMs help in wireless network
configuration?

26



Resource Block Assignment in OFDMA Wireless Systems

Agent Multi-user Communication Network

_____

zP — input observation (channel gains, resource block assignments, user requirements)

a? — action (resource block assignments)

Tr41 — reward (data rate of the base station)

27
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Resource Block Assignment in OFDMA Wireless Systems

U g o S o

e e i @ S~

Why ML and not traditional model-based optimization?

LN\L AYCIIL !
4

............................. Agent . Multi-user Communication Network
b . . . . .
z¢ — input observation (channel gains, resource block assignments, user requirements)
b

a; — action (resource block assignments)
Tr41 — reward (data rate of the base station)

28
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Resource Block Assignment in OFDMA Wireless Systems

e e i @ S~

Why ML and not traditional model-based optimization?

DRNL AZCIIL !
4

ot e s s mm s mm s s mm t mm s mm s mm s mm s mm s = § s mm s = s s Em b = s e s mm s mm s mm s mm f mm  mm s mm t mm s Em s = omm =

No dependence on mathematical formulations
No computationally intensive, iterative procedures

Enhanced adaptability through continuous interaction !
with the dynamic environment

N Agent Multi-user Communication Network

\\\\\

zP — input observation (channel gains, resource block assignments, user requirements)

a? — action (resource block assignments)

Tr41 — reward (data rate of the base station)

29
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Resource Block Assignment in OFDMA Wireless Systems

\

y DRL Agent .
fneliert '—P’.‘ e e T e = '.\ T
rompt . . T
{ R Fine-tuning /e !
| engineering all -
] V1 | !
: iiéj__ —0— I
I —40; — izl
o LLM Agent ! :@“t>7t+1
e e e Agent . Multi-user Communication Network
zP — input observation (channel gains, resource block assignments, user requirements)

a? — action (resource block assignments)

Tr41 — reward (data rate of the base station)
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Resource Block Assignment in OFDMA Wireless Systems

'5"LLMS generalize well due to pre-training or;_‘g!
‘large-scale datasets 5 &

'LLMs process textual descriptions of network

'setups — inherent flexibility unlike DRL :

. R e T mmmw wmm e O mm n emm n memn e n mm n wmm n memw ’( T
| Prompt : . T
Omp! Fine-tuning A I
| engineering £~ H= -
u,— s !
] _0_ &
I —cO ? —O-

Multi-user Communication Network

.....

zP — input observation (channel gains, resource block assignments, user requirements)

a? — action (resource block assignments)

Tr41 — reward (data rate of the base station)

31
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In the following

« we address the resource block assignment problem in a multi-user, multi-cell OFDM Open RAN

— Constraints: minimum user rate requirements and maximum transmit power constraints for each base station.
— This design ensures vendor-agnostic deployment of xAPPs and seamless integration into heterogeneous Open RAN

ecosystems.

* we propose a competitive agent interaction model with independent learning

— LLM-FT performs resource block assignment—ensuring adaptability across varying network configurations
— This approach eliminates the communication overhead of exchanging weight parameters and experiences

 the LLM-FT-based framework enables simultaneous resource block assignment across multiple
resource blocks.

32
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MALLM-FT-based Implementation Framework [1]

No communication overhead

1
1

! ®
i Fine-tuned ! -, Interference
1
: oo » LLM |
1 ¢ |—o ;
I ¢ < —© :
! ‘g \ 1
1 . .
i LLM Fine-tuning !
i * Network data b b
: ' | l v Ze s T4
; b TIT

S Instruction: What is the optimal resource block allocation for a base v . !
! (1) b ;tatiton :vith t\fft) astso:iatedpl?sers when their channel gatins for each < 0 0 la 1
! R (1) block at time instant 0.0(ms) are [0.92, 0.88, 0.85, 0.82, 0.56; 0.27, - - - 1 Multi user Communication Network
| 0 g 0.84, 0.95, 0.82, 0’.34]?'Maximum transrjnit po:ver of the base stati'on is i -
! 0 ;{Oe\:/p’o:};el The optin?al resourtce blolc(])gi)]loo.:itiorzl'?oyfsir)s is l[31 1t 0 01 }1'; . Prompt I b h l . .
: — | 00110], hence, their requirements can/cannot be satisfied. 7 englneerlng 1 Zt — channe galns, resources 3881gnments
. ! ab - resource block assignments
1 : .
: Resource block assignment ! rP. ; — data rate of the base station
P —

Independent and Competitive LLM-FT Agent Individual rewards
33 [1]1 A. Kopié, L. Simi¢, M. Petrova, “Large Language Models for Resource Block Assignment with QoS Constraints in ' R“TI'I
OFDMA Multi-Cell Open RAN,” under review. ﬁ){/l e cations
C and Goumputing



Open RAN: MALLM-FT-based Implementation Framework

Response: The optimal resource block allocation for

@

............................................................... amm ey
1 A=
i Near real-time RIC platform XAPP2 | Interface E2
1
> xAPP1 |«
! Interface E2 Interface E2 T_:_ % Interface E2 :
1
Resource block assignment
i
Instruction: What is the optimal resource block Network data | 0
allocation for a base station with two associated users 1
when their channel gains for each block at time instant .
0.0(ms) are [0.92, 0.88, 0.85: 0.27, 0.84, 0.95]? - o= < Observation L, .
Transmit power of the base station is 10W, while users’ o ! R
requirements are [0.6; 0.4] * 2.5 Mbps, respectively. Prompt ! Q‘ b4
The system bandwidth is 20MHz. engineering : eTe
i
!

users is [1 1 2], where the values denote users’ indices 577
ra

Multi-user, multi-cell
communication network

-, Interference

34
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Baseline Algorithms

 Resource block allocation

— Hungarian algorithm [2] — suboptimal solution
— Max-rate (MR) scheduler (greedy)
— Proportional fair (PF) scheduler (time/spectrum round robin scheduler)
— DRL-based solution: Deep Q-Network (DQN)
= Same components’ design as LLM agent

35 [2] H. Yin and H. Liu, “An efficient multiuser loading algorithm for ofdm-based broadband wireless systems,” in Proc.
Globecom '00 - IEEE, vol. 1, 2000, pp. 103-107. ((T{/ICC Mobile
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DRL Model Parameters

Parameter Value Parameter Value

Number of test episodes (N¢est) 10 000 DQN-specific — RB assignment

Number of warm-up episodes (N,,;+,) 1000 Frequency of the target | 10

Number of training episodes (N, 20 000 network update (T)

Batch size (S) 64 Epsilon (training values) | ¢, = 1.0 - g = 0.001
Size of replay memory (M) 31 000 Learning rate () 0.001

Discount factor (y) 0.95

DNN Architecture

DQN [Nep+UP+UPNpp, 128, 32,U° Nyg] (activation = elu)

X:‘_f_bl: if rate demand holds;
—0.1(R™? — X%%)%%,  otherwise;

TILETL

Reward function: 7.+ = {

Vi, Vb.

36
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LLM Parameters — Resource Block Allocation

Parameter

Phi-3 Mini-specific

Value

Number of parameters (Np;-,) 3.82 billion
Context length (N.,,,) 128 000
Fine-tuning method (FT) LoRA
Learning rate (a) 0.00005
Number of epochs to perform (N,) 3.0
Number of samples for LLM-FT (N¢;) 21 000
Custom dataset format (alpaca, sharegpt) Sharegpt
Compute type fp16
Cutoff length — max number of input tokens (N.,;) 1024
Total train batch size (S;;y) 32
Percentage of trained parameters 0.33%

37

Mobile
F /ICC Communications
and Computing




System and Communication Channel Model Parameters

Symbol + value .

B=4 Npp = 50 ***
U=40 W =20 MHz
Prox = 40dBm
Channel model parameters
o2 =1 f. = 1.8 GHz
v =[0,50) km/h * osr = 7.82dB
L=8 we = 1200 ns

Ts orpm = 33.3 us — OFDM symbol duration

Af =30 kHz — subcarrier spacing

Winin,guara = 845 kHz — minimal guard bandwidth

NEB =12 — 360 kHz per RB

W =2 W, p
— 292721 = 50 - 600 subcarriers
Af Nsubc

* Ngp=

e User traffic model:

Application User Percentage | Rate requirement
Web browsing / HTTP | 20% 0.5 (Mbps)

FTP 10% 1 (Mbps)

Video (SD) 20% 1.5 (Mbps)

VoIP 30% 0.1 (Mbps)
Online gaming 20% 0.3 (Mbps)

*Evenly spaced values within an interval v = [0, 50) for all users

*#*Subcarrier spacing configuration 1 for 30 kHz subc. spacing

38
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Performance Evaluation

» Users’ rate requirement violations

— Performance with high-rate users
— Performance with low-demand users

» Generalizability of DQN and LLM-FT across user configurations

* Training, fine-tuning, and inference times

39
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Users’ Rate Requirement Violations

= Likelihood that a user’s data rate requirements is  * Note: A positive rate violation gap indicates that
not satisfied the method outperforms the benchmark Hungarian

User index, u method, and vice versa.

100 SR S
AUEEN NEEE R
Y SRS S S O

251 ! i ! ! : : i
* s ' s s . * p

+

P N N S SR SR SN 2 'S S
%) 8 N N A (N A S LA N B
—75/ + MR = DON
¢ PF e LLMFT

Rate violation gap (percentage points)

-1 U'U --------- ----- | i ) :
15 1.5 1.0 05 05 03 03 0.1 0.1 0.1
Per-user data rate requirements, R"? (Mbps), for b=1
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Users’ Rate Requirement Violations

= Likelihood that a user’s data rate requirementsis ~ * Note: A positive rate violation gap indicates that
not satisfied the method outperforms the benchmark Hungarian

User index, u method, and vice versa.

1 2 3 4 5 6 7 8 9 10

1001 | | . » Across almost all configurations, LLM-FT
) | | D , component outperforms Hungarian benchmark
= i : i : 1
= 751 e E s R E E
8 = Why?
@ i i i i i
E 5':' """"" """ « LLMis more adaptable to heterogeneous rate demands
% 251 - * | - * Inherently QoS-aware and incorporates historical
— i H i i 1
g 0 ' ‘ i i . . * performance or tracks unmet user demands
— o e B e e e
5 | ¢ + @ ‘ T  Leads to long-term satisfaction optimization
AT Y= N SRS SR SN SN S Y W S S
E =29 ‘ . # » Especially apparent for users 8-10, who rely on less
T 50 + ........... SN SO bandwidth-heavy VoIP services
A L R A I N
O [ e e S R V' DQN
TR Y N R B S S ' ¢ PF e LLMFT|

15 15 1.0 05 05 03 03 01 01 0.1
Per-user data rate requirements, R"? (Mbps), for b=1
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Users’ Rate Requirement Violations

" Likelihood that a user’s data rate requirementsis  « Performance with high-rate users

not satisfied

User index, u
12 3 4 5 6 7 8 9 10 = For users 1-5, associated with web browsing, FTP, and

100} i video services, LLM-FT and Hungarian methods outperform
2 | L | L MR, PF scheduling, and DQN.

0= L e e e S B B B S S S

u% = User 1: LLM-FT reduces the likelihood of rate violations by
o 5'3' """"" """ 80 percentage points compared to both PF and DQN

= . . 1 | \ 1

S 25] i i i : : methods.

. & ! i i i

2 ' ' . L

£ O S 1 S —

= | * + ¢ I "' = MR and PF limitations stem from their lack of sensitivity to
f —;’.5 --------- PO ‘F ---------- individual user requirements, leading to suboptimal

= ol s R s s decisions in environments with heterogeneous per-user

E + * H QoS demands.

% =751 I ' + MR ¢ DIQN ' = The DQN model exhibits similar behavior

= _j00l A * _____ ¢ PF e LLM-FT

15 15 1.0 05 05 03 03 01 01 0.1
Per-user data rate requirements, R"? (Mbps), for b=1
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Generalizability of LLM across User Configurations

b
AVERAGE PER-CELL b SUM RATE X; (MBPS) ACROSS USER DENSITIES [/ FOR DIFFERENT ALGORITHMS

: Hungarian DQN LLM-FT
Number of cellular wsers (1) = T3 [ =1 [ 5=1 | 5=2 | 5=3 | 6=1 | o=1 | 6=2 | 6=3 | b=1
24 623 | 617 | 638 | 634 | 594 | 599 | 628 | 629 | 703 | 656 | 662 | 653
40 770 | 741 | 726 | 757 | 733 | 686 | 656 | 686 | 862 | 751 | 7.02 | 7.63
56 796 | 814 | 817 | 795 | - | - | - | - | 791 | 671 | 697 | 659

= DQN is trained and LLM-FT framework is fine-tuned on a 40-user OFDM system

— Both are tested on various user configurations

— DAQN achieves a slightly lower average per-base station sum rate in the default 40-user scenario
= Similar observed in with fewer users, where model operates with zero-padded inputs — reasonable level of adaptability
= However, it fails to support settings with 56 users due to fixed neural network architecture
— LLM-FT exhibits strong generalization and adaptability across user setups
= Yet, slight decline in high-density scenarios
= Why?
= Primarily due to hallucinations within the LLM output.
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Training, Fine-tuning, and Inference Times

Algorithm/Time | Training Fine-tuning Inference (ms)
Traditional model-based methods » LLM has longer inference time compared to both
;1{* - - 32 TMBO and DRL solutions

. - - > — Requires 50 times more time for inference than Hungarian
Hungarian - - J1.81

benchmark

DRI-based mode Nearly 1600 times larger inf time than DQN f k
DQN Z 0.08 hoar 1 - 105 — Nearly imes larger inference time than ramewor
LLM-based solution
LLM-FT ~ 10 years ~ 13.25 hour| | 1745 (1.75 s) - Why?
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Training, Fine-tuning, and Inference Times

Algorithm/Time | Training Fine-tuning Inference (ms)
Traditional model-based methods » LLM has longer inference time compared to both
;1{* - - ij‘i TMBO and DRL solutions

. - - > — Requires 50 times more time for inference than Hungarian
Hungarian - - J1.81

benchmark

DRL-based model Nearly 1600 times larger inf time than DQN f k
DQN Z 0.08 hoar 1 - 105 — Nearly imes larger inference time than ramewor
LLM-based solution
LLM-FT ~ 10 years ~ 13.25 hour| | 1745 (1.75 s) - Why?

= LLM consists of 3.82 billion parameters
— Significantly more than DRL
— DAQN: 92,436

Phi-3 Mini: One of the
smallest LLMs recently
introduced

45

Mobile
F /ICC Communications
and Computing



Training, Fine-tuning, and Inference Times

Algorithm/Time | Training |[Fine-tuning Inference (ms)
Traditional mpdel-based methods

MR - - 2.51

PF - - 0.69
Hungarian - - J1.81
DRL-based mpdel

DN ~ (.08 hour | | 1.05
LLM-based sg¢lution

LLM-FT ~ 10 years ~ 13.25 hour | 1745(1.75 s)

Unlike DRL, LLM-FT leverages a pre-trained LLM
— Eliminates the need for training from scratch or full retraining
— Pre-training would take up to 10 years on a single GPU —

bypassed by a light-weight fine-tuning of existing models
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Training, Fine-tuning, and Inference Times

Algorithm/Time | Training Fine-tuning Inference (ms)
Traditional model-based methogds

MR - - 2.51

PF - - 0.69
Hungarian - - J1.81
DRL-based model

DN ~ (.08 hour | - 1.05
LLM-based solution

LLM-FT ~ 10 years ~ 13.25 hour | |1745(1.75 s)

= Unlike DRL, LLM-FT leverages a pre-trained LLM
— Eliminates the need for training from scratch or full retraining
— Pre-training would take up to 10 years on a single GPU —
bypassed by a light-weight fine-tuning of existing models

— LLM has significantly shorter inference time compared to the
training or retraining duration of DRL

» Hardware acceleration advancements
— (GPUs and TPUs), tensor and pipeline parallelism expected to

reduce LLM inference latency

— Moreover, inference libraries like FlashAttention or multi-token
decoding techniques can also accelerate LLM performance
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Remarks

* Proposed LLM-FT framework outperforms both model-based and DRL-based solutions

— Achieves up to 21 percentage points lower probabilities of users’ rate requirement violations
— LLM-FT is a QoS-aware solution that incorporates historical performance and tracks unmet user demands

« LLM-FT exhibits strong adaptability across various user densities post fine-tuning, unlike DRL
approaches with fixed neural network architecture

« Challenges:
— The computational complexity of LLMs remains a major challenge
— Yet, ongoing advancements in hardware acceleration and process parallelism are expected to substantially reduce LLM

inference latency
— This would enhance their practicality in future wireless networks
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Vielen Dank
fur lhre Aufmerksamkeit
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