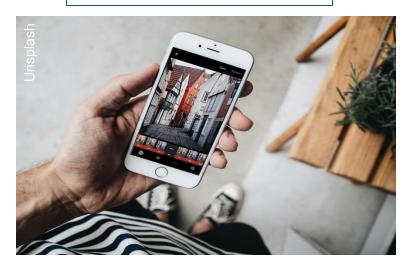


Can ML Empower Efficient Wireless Network Self-Configuration and Optimization?

Prof. Dr.-Ing. Marina Petrova BOWW 2025 Berlin, Germany Sept. 09-10, 2025

Wireless Traffic of the Future

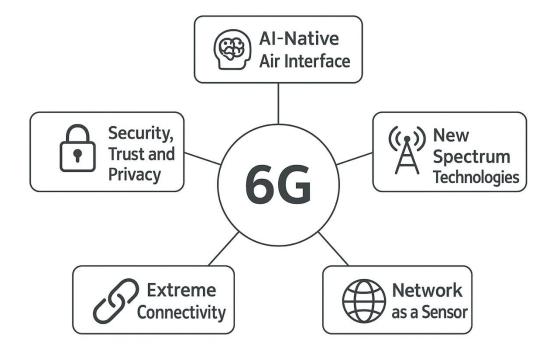
Human-centric devices



Machine-centric devices

The Promise of 6G...

- 6G are expected to revolutionize human and machine communications.
- Should deliver unprecedented capacity, low latency, energy efficiency, and cognitive capabilities to manage vast radio resources.



AI for Wireless Networks

- signals theory
- optimization theory
- Fourier analyses
- signal processing
- ..
- Al

AI for Wireless Networks

PHY

- channel estimation
- digital predistortion
- channel resource optimisation
- Autoencoder
- ...

MAC

- resource allocation
- scheduling
- link adaptation
- ..

Network/Transport

- congestion control
- mobility management
- ...

APPs

- Al as a service
- digital twins
- predictive maintenance
- ...

Protocols design and engineering?

Challenges

- explainability (technical depth and dependencies)
- unstable decisions in unseen situations
- efficient data collection and learning
- energy and computational efficiency
- Cost \$

This Talk...

will introduce

- Multi-Agent DRL for MAC Protocol Synthesis and Optimization
- LLM based Resource Block Allocation in Multi-Cell Networks

... and discuss the trade-offs of automation, flexibility and efficiency.

Background

- 6G networks will offer a variety of services beyond connectivity
 - in licensed and unlicensed bands.
 - through coexistence of different access technologies.
 - addressing a wide spectrum of service requirements.
 - This calls for flexibility and adaptivity in the radio access protocols
 - Can ML assist the design of reconfigurable protocols?
 - Here we study a distributed MARL-based Medium Access Control (MAC)

Advancement Beyond State-of-the-Art

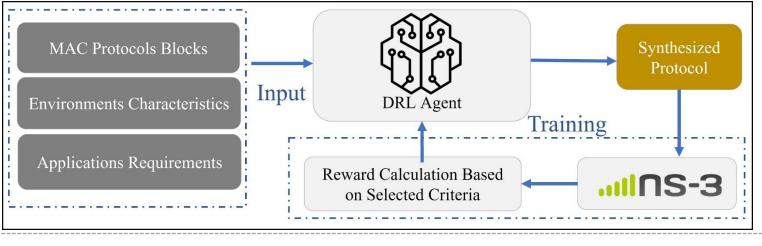
- In heterogeneous networks, it's desirable to
 - adapt the algorithm and protocols parameters on-the-fly according to the radio environment, network loads, and application requirements.
 - compose/select the right algorithm and parameter depending on the use case.

Advancement Beyond State-of-the-Art

- We design a MARL-driven MAC Protocol framework:
 - adopts a fully distributed protocol design approach
 - optimizes several MAC parameters and functions simultaneously and generates new policies.
 - deploys intelligent agents directly on network devices, rather than embedding fixed protocols
- agents autonomously synthesize, optimize, and dynamically adapt MAC protocols based on local observations, and radio and traffic conditions.

Multi-Agent Deep Reinforcement Learning (MADRL) framework

- enables fully distributed learning and decision-making by network nodes.
- Modular MAC protocol synthesis using ML-driven policies.



LBT: Listen Before Talk RS: Reservation signal EIED: Exponential Increased Exponential Decreased

MCOT: Maximum Channel Occupancy Time ED: Energy Detection

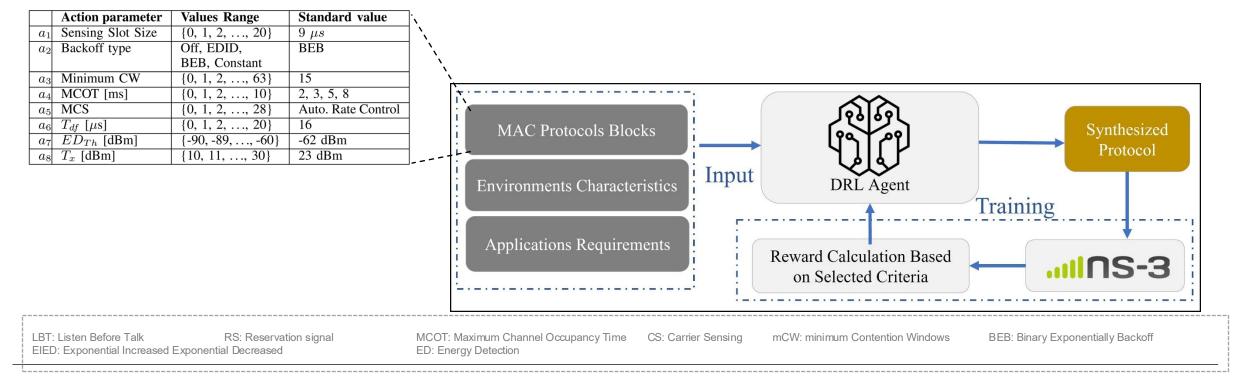
CS: Carrier Sensing

mCW: minimum Contention Windows

BEB: Binary Exponentially Backoff

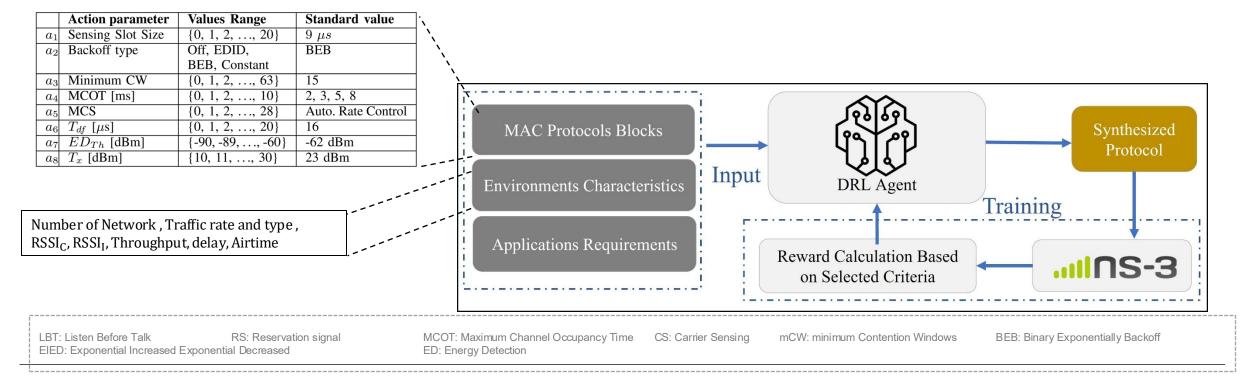
Multi-Agent Deep Reinforcement Learning (MADRL) framework

- enables fully distributed learning and decision-making by network nodes.
- Modular MAC protocol synthesis using ML-driven policies.



Multi-Agent Deep Reinforcement Learning (MADRL) framework

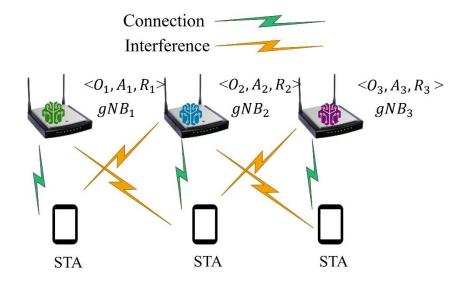
- enables fully distributed learning and decision-making by network nodes.
- Modular MAC protocol synthesis using ML-driven policies.



Learning approach

Distributed Training and Distributed Execution (DTDE) Partial Observation Markov decision process

 $o_x = \ll \text{Current Action}_x, \text{NN}_x, \text{TR}_x, \text{RSSI}_C, \text{RSSI}_I, \\ throughput_x \land \text{delay_x} \land \text{irtime_x} > | \forall gnb_x, x \in gNBs \ in \ the \ sensing \ range \} > \\ A_x = < MCOT_x, Power_x, MCS_x, ED_{THR_x}, defer \ time_X \\ Backoff_{type_x}, CW_{min_x}, Sensing \ slot \ duration_x >$

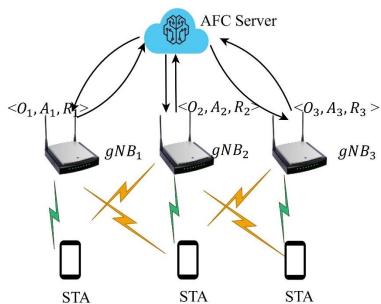


 In DTDE, each agent broadcasts its throughput, traffic rate, and airtime to the nodes within its range.

Centralized Training Centralized Execution (CTCE) Markov Decision Process

 $o_x = \ll \text{Current Action, NN, TR, RSSI}_C, \text{RSSI}_I, \\ throughput \land \text{delay} \land \text{irtime} > \mid \forall gnb_x, x \in \{1, ..., NN\} > \}$

 $A_x = < MCOT$, Power, MCS, ED_{THR} , defer time, Backof f_{type} , CW_{min} , $Sensing\ slot\ duration > | <math>\forall\ gnb_x, x \in \{1, ..., NN\} >$



Learning approach

Reward for each agent:

$$R = \sum \frac{\overline{Th_i}}{\overline{\lambda}} - \alpha \, \overline{t_{air,i}}$$

Proximal Policy Optimization (PPO)

Table 1. Taining and Environment Parameters

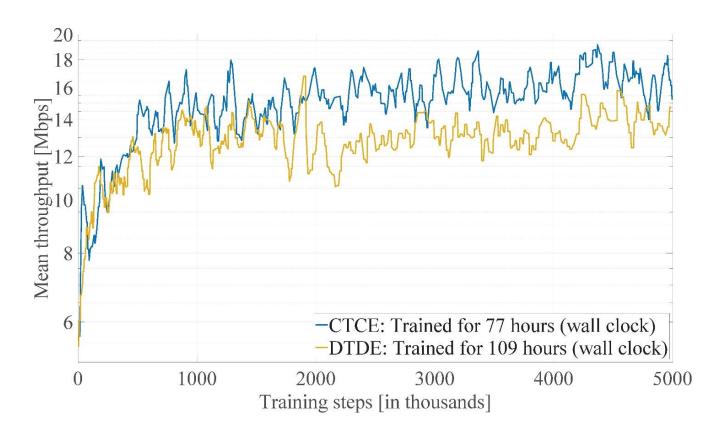
Number of networks (NN)	1-6
Operating Frequency, Bandwidth	6 GHz, 20 MHz
Traffic characteristic (TR): Poisson	$\lambda = [0 - 3000]$
and AR/VR with arrival rates λ	
Packet size	1500
Learning Rate, Optimizer	0.001, Adam
Policy	RNN (2 layers of 256)
batch size, M	1000
Step size, Episode duration	0.1 s, 50 s
α	0.3

 $\overline{Th_i}$: Mean normalized aggregated downlink throughput of i_{th} network

 $\overline{\lambda_i}$: Normalized traffic arrival rate

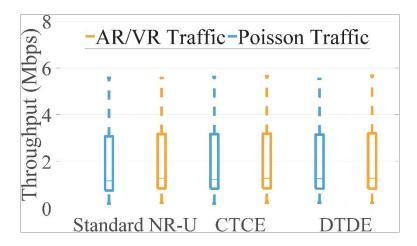
 $\overline{t_{air.i}}$: normalized airtime of i_{th} gNB

Learning Convergence

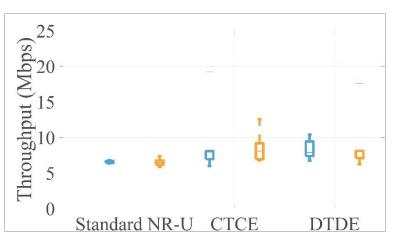


DTDE achieves slightly lower mean reward compared to centralized learning, due to lack of full control and knowledge The simulation and training processes were conducted on a server with 2 NVIDIA A30 GPU units and 64 CPU cores.

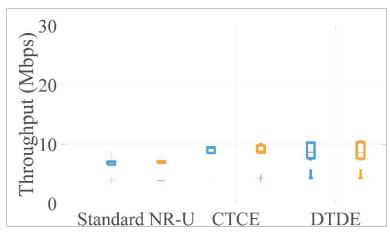
Performance Analyses



Low Traffic Scenario (10 to 500 packets/sec)



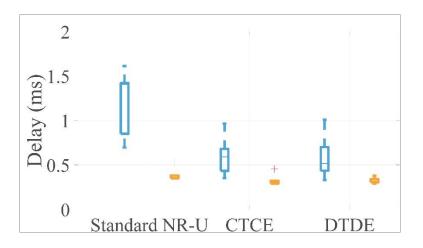
High Traffic Scenario (1000 to 3000 packets/sec)

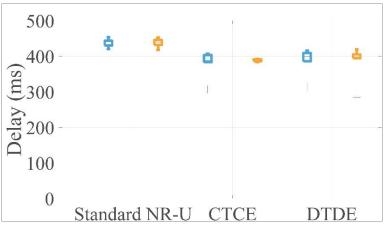


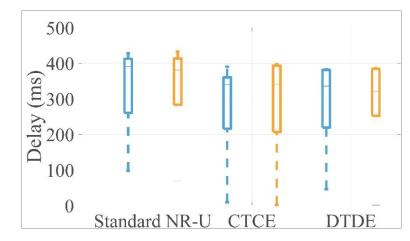
Random Traffic Scenario (1000 to 3000 packets/sec)

- The results obtained for six networks within the environment.
- Performance under diverse traffic scenarios (Poisson, AR/VR).
- MADRL improves throughput by at least 10% compared to standard 5G NR-U.
- Performance closely matches centralized learning approaches despite decentralized, partial observability.

Performance Analyses







Low Traffic Scenario (10 to 500 packets/sec)

High Traffic Scenario (1000 to 3000 packets/sec)

Random Traffic Scenario (1000 to 3000 packets/sec)

- Substantial reduction in end-to-end packet delay.
- Reduced carrier-sensing overhead contributes to lower latency.
- Power control and energy detection thresholds dynamically adjusted by each node minimize interference.

Concluding Remarks 1

- DLR agents autonomously synthesize, optimize, and dynamically adapt MAC protocols based on local observations and conditions.
- The synthesis protocols demonstrate notable enhancements in throughput and latency reduction.

Future work:

- Analyzing distributed learning approaches for enhanced adaptability in heterogeneous environments 5G NR/Wi-Fi.
- Implementing on the real hardware.
- Explore accelration

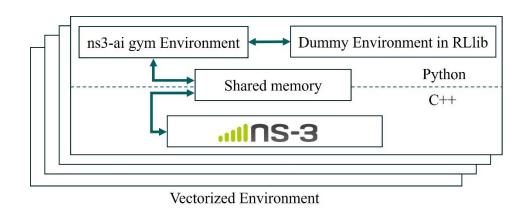
Dissemination and Open-Source Availability

Paper Reference:

N. Keshtiarast, O. Renaldi and M. Petrova, "Wireless MAC Protocol Synthesis and Optimization With Multi-Agent Distributed Reinforcement Learning," in IEEE Networking Letters, vol. 6, no. 4, pp. 242-246, Dec. 2024, doi: 10.1109/LNET.2024.3503289.

Open-Source Implementation:

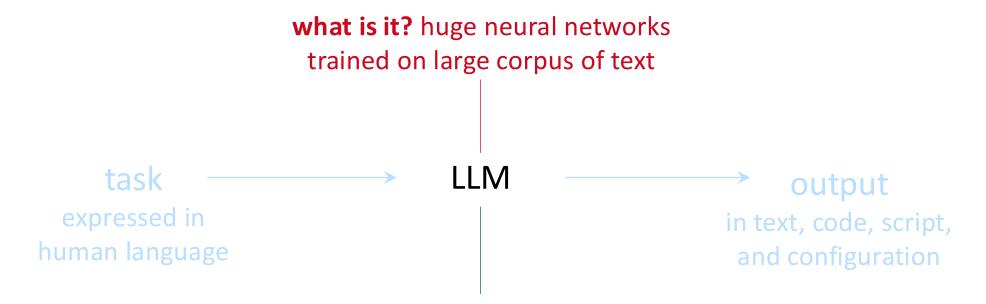
- Applicable for multi agent optimizing for single or multiple MAC/PHY layer parameters.
- Supports diverse technologies: 5G NR, 5G NR-U, Wi-Fi (IEEE 802.11 protocols)
- Highly adaptable to various application scenarios and network environments.



https://github.com/navid-keshtiarast/ML-Framework-for-NR-U-MAC-Protocol-Design-Multi-agent

LLMs for Resource Block Assignment with QoS Constraints in OFDMA Multi-Cell (Open) RAN

Can Large Language Models (LLMs) help?



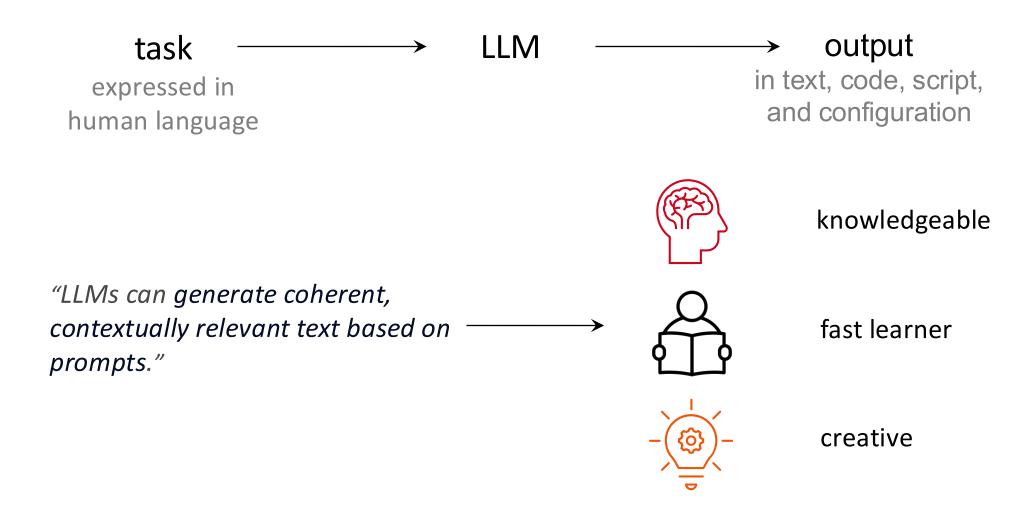
how does it work? given text input, predict next sequence of words

Can Large Language Models (LLMs) help?

Example of LLMs

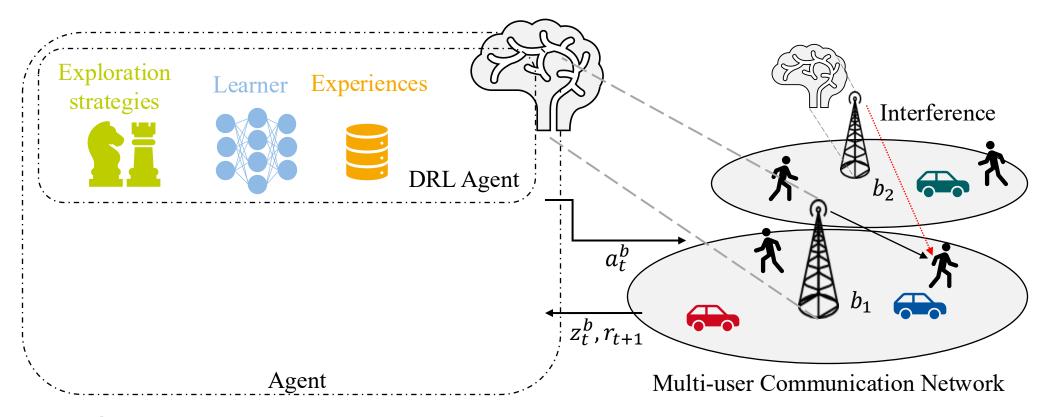
© Dejan Kostić

Can Large Language Models (LLMs) help?



© Dejan Kostić

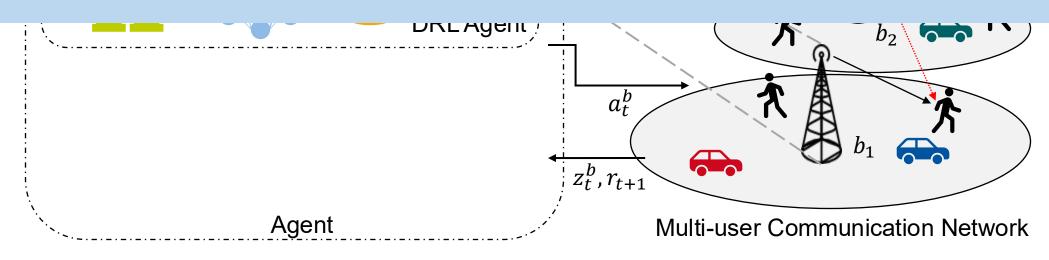
Can LLMs help in wireless network configuration?



 $z_t^b \rightarrow$ input observation (channel gains, resource block assignments, user requirements)

 $a_t^b \rightarrow \text{action (resource block assignments)}$

Why ML and not traditional model-based optimization?



 $z_t^b \rightarrow$ input observation (channel gains, resource block assignments, user requirements)

 $a_t^b \rightarrow \text{action (resource block assignments)}$

Why ML and not traditional model-based optimization?

No dependence on mathematical formulations No computationally intensive, iterative procedures

Enhanced adaptability through continuous interaction with the dynamic environment

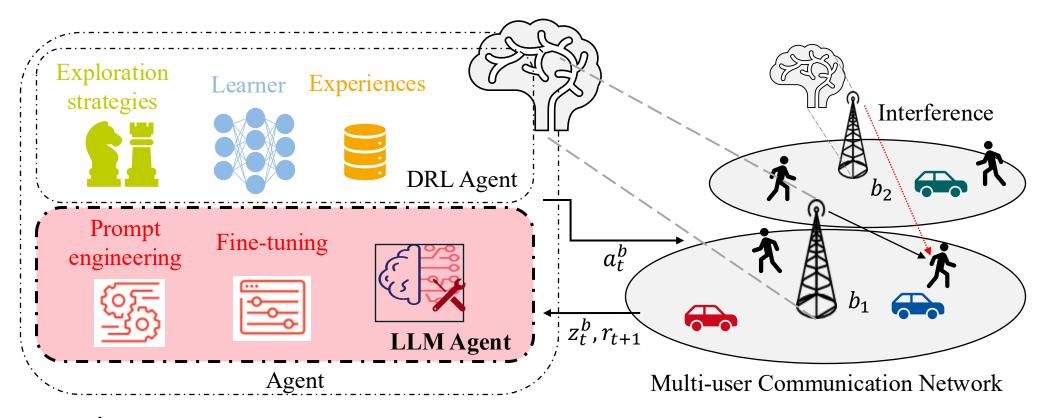
Agent

 a_t^b z_t^b, r_{t+1}

Multi-user Communication Network

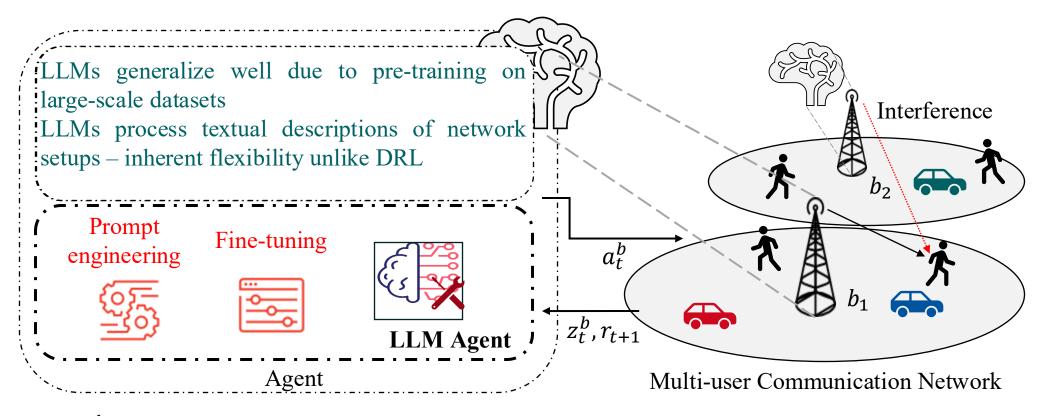
 $z_t^b \rightarrow$ input observation (channel gains, resource block assignments, user requirements)

 $a_t^b \rightarrow \text{action (resource block assignments)}$



 $z_t^b \rightarrow$ input observation (channel gains, resource block assignments, user requirements)

 $a_t^b \rightarrow \text{action (resource block assignments)}$



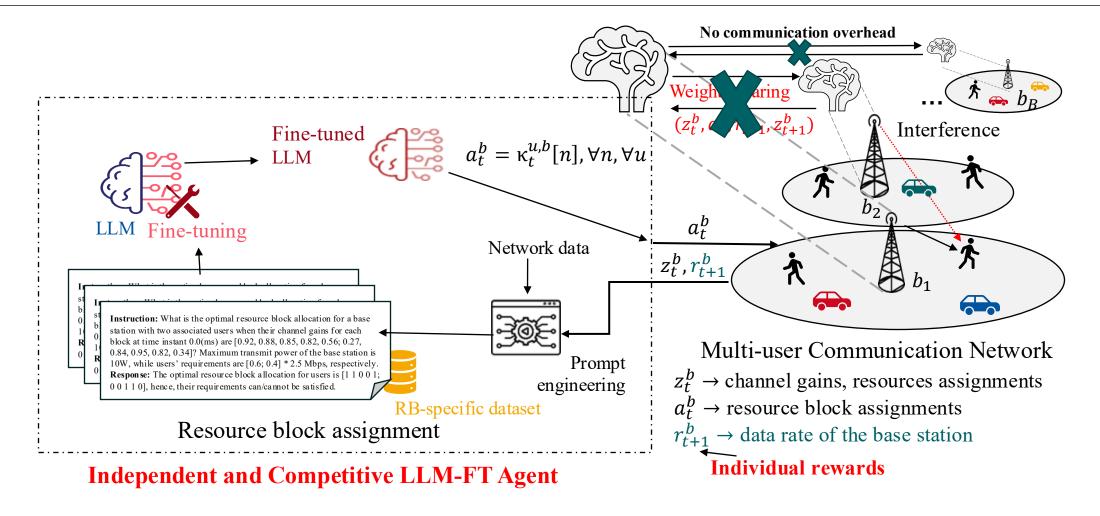
 $z_t^b \rightarrow$ input observation (channel gains, resource block assignments, user requirements)

 $a_t^b \rightarrow \text{action (resource block assignments)}$

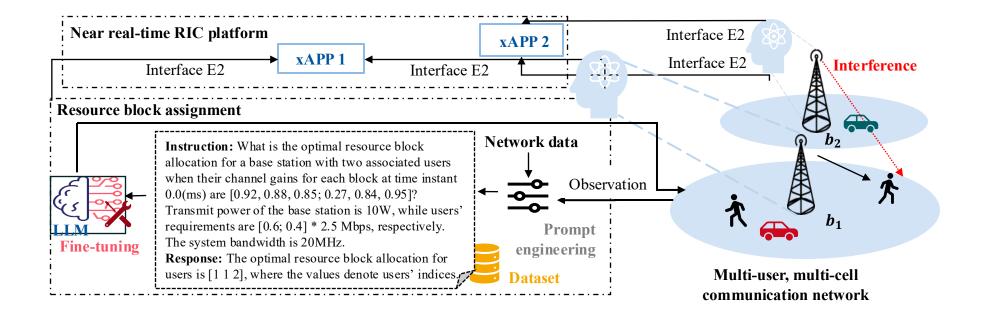
In the following

- we address the resource block assignment problem in a multi-user, multi-cell OFDM Open RAN
 - Constraints: minimum user rate requirements and maximum transmit power constraints for each base station.
 - This design ensures vendor-agnostic deployment of xAPPs and seamless integration into heterogeneous Open RAN ecosystems.
- we propose a competitive agent interaction model with independent learning
 - LLM-FT performs resource block assignment—ensuring adaptability across varying network configurations
 - This approach eliminates the communication overhead of exchanging weight parameters and experiences
- the LLM-FT-based framework enables simultaneous resource block assignment across multiple resource blocks.

MALLM-FT-based Implementation Framework [1]



Open RAN: MALLM-FT-based Implementation Framework



Baseline Algorithms

Resource block allocation

- Hungarian algorithm [2] suboptimal solution
- Max-rate (MR) scheduler (greedy)
- Proportional fair (PF) scheduler (time/spectrum round robin scheduler)
- DRL-based solution: Deep Q-Network (DQN)
 - Same components' design as LLM agent

DRL Model Parameters

Parameter	Value
Number of test episodes (N_{test})	10 000
Number of warm-up episodes (N_{wrm})	1000
Number of training episodes (N_{tr})	20 000
Batch size (S)	64
Size of replay memory (M)	31 000
Discount factor (γ)	0.95

Parameter	Value	
DQN-specific – RB assignment		
Frequency of the target network update (T)	10	
Epsilon (training values)	$ \epsilon_I = 1.0 \rightarrow \epsilon_F = 0.001 $	
Learning rate (α)	0.001	

Network	DNN Architecture
DQN	$[N_{RB} + U^b + U^b N_{RB}, 128, 32, U^b N_{RB}]$ (activation = elu)

Reward function:
$$r_{t+1}^b + = \begin{cases} X_{t+1}^{u,b}, & \text{if rate demand holds;} \\ -0.1(R_{min}^{u,b} - X_{t+1}^{u,b})^{0.5}, & \text{otherwise;} \end{cases}$$

$$\forall u, \ \forall b.$$

LLM Parameters – Resource Block Allocation

Parameter	Value	
Phi-3 Mini-specific		
Number of parameters (N_{prm})	3.82 billion	
Context length (N_{con})	128 000	
Fine-tuning method (FT)	LoRA	
Learning rate (α)	0.00005	
Number of epochs to perform (N_e)	3.0	
Number of samples for LLM-FT (N_{ft})	21 000	
Custom dataset format (alpaca, sharegpt)	sharegpt	
Compute type	fp16	
Cutoff length – max number of input tokens (N_{cut})	1024	
Total train batch size (S_{LLM})	32	
Percentage of trained parameters	0.33%	

System and Communication Channel Model Parameters

Symbol + value					
B = 4	N _{RB} = 50 ***				
U = 40	W = 20 MHz				
	P_{max}	a = 40dBm			
Ch	annel r	nodel parameters			
$\overline{\sigma}^2 = 1$		$f_c = 1.8 \text{ GHz}$			
v = [0, 50) km/	$v = [0, 50) \text{ km/h} * \sigma_{SF} = 7.82 dB$				
L = 8 $\mu_{\tau} = 1200 \text{ ns}$					
$T_{s,OFDM} = 33.3 \mu\text{s}$ – OFDM symbol duration					
$\Delta f = 30 \ kHz - subcarrier spacing$					
$W_{min,guard} = 845 \ kHz$ – minimal guard bandwidth					

•
$$N_{subc}^{RB} = 12 \rightarrow 360 \text{ kHz per RB}$$

•
$$N_{RB} = \left[\frac{W - 2 W_{min,guard}}{\Delta f N_{subc}^{RB}} \right] = 50 \rightarrow 600 \text{ subcarriers}$$

• User traffic model:

Application	User Percentage	Rate requirement
Web browsing / HTTP	20%	0.5 (Mbps)
FTP	10%	1 (Mbps)
Video (SD)	20%	1.5 (Mbps)
VoIP	30%	0.1 (Mbps)
Online gaming	20%	0.3 (Mbps)

*Evenly spaced values within an interval v = [0, 50) for all users

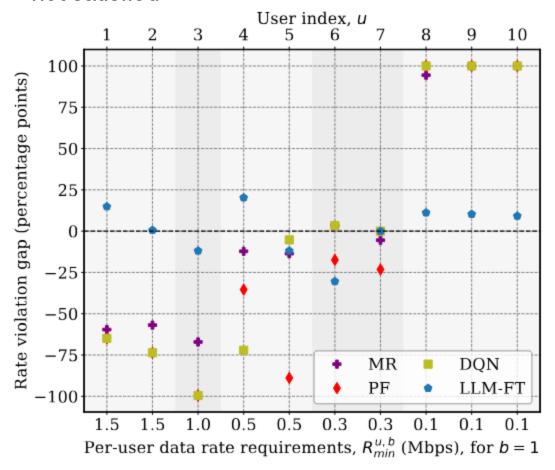
***Subcarrier spacing configuration 1 for 30 kHz subc. spacing

Performance Evaluation

- Users' rate requirement violations
 - Performance with high-rate users
 - Performance with low-demand users
- Generalizability of DQN and LLM-FT across user configurations
- Training, fine-tuning, and inference times

Users' Rate Requirement Violations

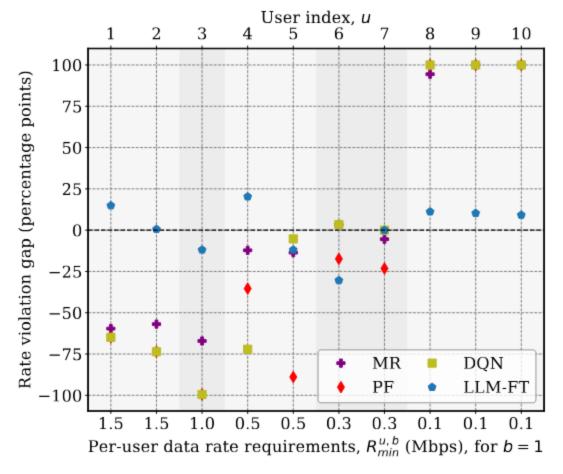
 Likelihood that a user's data rate requirements is not satisfied



 Note: A positive rate violation gap indicates that the method outperforms the benchmark Hungarian method, and vice versa.

Users' Rate Requirement Violations

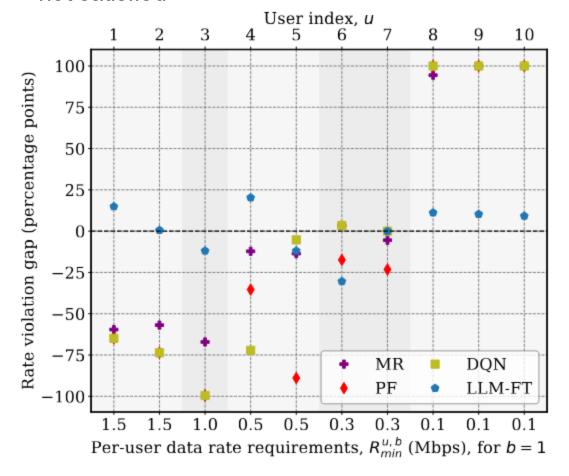
 Likelihood that a user's data rate requirements is not satisfied



- Note: A positive rate violation gap indicates that the method outperforms the benchmark Hungarian method, and vice versa.
- Across almost all configurations, LLM-FT component outperforms Hungarian benchmark
- Why?
 - LLM is more adaptable to heterogeneous rate demands
 - Inherently QoS-aware and incorporates historical performance or tracks unmet user demands
 - Leads to long-term satisfaction optimization
 - Especially apparent for users 8-10, who rely on less bandwidth-heavy VoIP services

Users' Rate Requirement Violations

 Likelihood that a user's data rate requirements is not satisfied



Performance with high-rate users

- For users 1-5, associated with web browsing, FTP, and video services, LLM-FT and Hungarian methods outperform MR, PF scheduling, and DQN.
- User 1: LLM-FT reduces the likelihood of rate violations by 80 percentage points compared to both PF and DQN methods.
- MR and PF limitations stem from their lack of sensitivity to individual user requirements, leading to suboptimal decisions in environments with heterogeneous per-user QoS demands.
- The DQN model exhibits similar behavior

Generalizability of LLM across User Configurations

Average per-cell b sum rate \overline{X}_t^b (MBPS) across user densities U for different algorithms

Number of cellular users (U)	Hungarian			DQN			LLM-FT					
Number of centual users (6)	b =1	b=2	b=3	b=4	b=1	b=2	b=3	b=4	b =1	b=2	b=3	b=4
24	6.23	6.17	6.38	6.34	5.94	5.99	6.28	6.29	7.03	6.56	6.62	6.53
40	7.70	7.41	7.26	7.57	7.33	6.86	6.56	6.86	8.62	7.51	7.02	7.63
56	7.96	8.14	8.17	7.95	_	_	_	_	7.91	6.71	6.97	6.59

- DQN is trained and LLM-FT framework is fine-tuned on a 40-user OFDM system
 - Both are tested on various user configurations
 - DQN achieves a slightly lower average per-base station sum rate in the default 40-user scenario
 - Similar observed in with fewer users, where model operates with zero-padded inputs reasonable level of adaptability
 - However, it fails to support settings with 56 users due to fixed neural network architecture
 - LLM-FT exhibits strong generalization and adaptability across user setups
 - Yet, slight decline in high-density scenarios
 - Why?
 - Primarily due to hallucinations within the LLM output.

Algorithm/Time	Training	Inference (ms)		
Traditional mode				
MR	-	-	2.54	
PF	-	-	0.69	
Hungarian	-	-	34.81	
DRL-based mode				
DQN	$\sim~0.08~\mathrm{hour}$	-	1.05	
LLM-based soluti				
LLM-FT	~ 10 years	$\sim~13.25~\mathrm{hour}$	1745 (1.75 s)	

- LLM has longer inference time compared to both TMBO and DRL solutions
 - Requires 50 times more time for inference than Hungarian benchmark
 - Nearly 1600 times larger inference time than DQN framework
 - Why?

Algorithm/Time	Training	Inference (ms)		
Traditional mode				
MR	-	-	2.54	
PF	-	-	0.69	
Hungarian	-	-	34.81	
DRL-based mode				
DQN	$\sim~0.08~\mathrm{hour}$	-	1.05	
LLM-based soluti				
LLM-FT	~ 10 years	$\sim~13.25~\mathrm{hour}$	1745 (1.75 s)	

- LLM has longer inference time compared to both TMBO and DRL solutions
 - Requires 50 times more time for inference than Hungarian benchmark
 - Nearly 1600 times larger inference time than DQN framework
 - Why?
- LLM consists of 3.82 billion parameters
 - Significantly more than DRL
 - DQN: 92,436

Phi-3 Mini: One of the smallest LLMs recently introduced

		7	
Algorithm/Tin	ne Training	Fine-tuning Inference ((ms)
Traditional m	odel-based methods		
MR	-	- 2.54	
PF	-	- 0.69	
Hungarian	-	- 34.81	
DRL-based m	odel		
DQN	∼ 0.08 hour	- 1.05	
LLM-based so	lution		
LLM-FT	~ 10 years	~ 13.25 hour 1745 (1.75	5 s)
·			

- Unlike DRL, LLM-FT leverages a pre-trained LLM
 - Eliminates the need for training from scratch or full retraining
 - Pre-training would take up to 10 years on a single GPU –
 bypassed by a light-weight fine-tuning of existing models

Algorithm/Time	Training	Fine-tuning	Inference (ms)
Traditional model	-based metho	ds	
MR	-	-	2.54
PF	-	-	0.69
Hungarian	-	-	34.81
DRL-based mode	l		
DQN	$\sim~0.08~{ m hou}$	r -	1.05
LLM-based solution			
LLM-FT	$\sim~10~{ m years}$	∼ 13.25 hour	1745 (1.75 s)

- Unlike DRL, LLM-FT leverages a pre-trained LLM
 - Eliminates the need for training from scratch or full retraining
 - Pre-training would take up to 10 years on a single GPU –
 bypassed by a light-weight fine-tuning of existing models
 - LLM has significantly shorter inference time compared to the training or retraining duration of DRL
- Hardware acceleration advancements
 - (GPUs and TPUs), tensor and pipeline parallelism expected to reduce LLM inference latency
 - Moreover, inference libraries like FlashAttention or multi-token decoding techniques can also accelerate LLM performance

Remarks

- Proposed LLM-FT framework outperforms both model-based and DRL-based solutions
 - Achieves up to 21 percentage points lower probabilities of users' rate requirement violations
 - LLM-FT is a QoS-aware solution that incorporates historical performance and tracks unmet user demands
- LLM-FT exhibits strong adaptability across various user densities post fine-tuning, unlike DRL approaches with fixed neural network architecture
- Challenges:
 - The computational complexity of LLMs remains a major challenge
 - Yet, ongoing advancements in hardware acceleration and process parallelism are expected to substantially reduce LLM inference latency
 - This would enhance their practicality in future wireless networks

Vielen Dank für Ihre Aufmerksamkeit

