# **Exploiting 5G for Covert Channels: But what about Open RAN?**

Markus Walter Federal Office for Information Security (BSI)



#### BSI as the Federal Cyber Security Authority

shapes information security in digitization through prevention, detection and reaction for government, business and society.

#### **Competence Center 5G/6G**



- Security guidelines for national 5G network operators
- **5G/6G Security Lab**: Analysis and evaluation of vulnerabilities and attack vectors
- **Standardization** and **certification**: Cooperation in international committees (e.g. ENISA, 3GPP, ETSI)
- Cooperation with R&D, vendors and MNOs

# What exactly is a Covert Channel?

- Covert channels hide existence of data transmission between covert sender and receiver
- Originally not intended for transferring data
- Network covert channels categorized by taxonomy of Wendzel et al.:

|                       | Covert Timing Pattern |                     |                    |                              |                                |                     |             |                             |                      |  |  |  |
|-----------------------|-----------------------|---------------------|--------------------|------------------------------|--------------------------------|---------------------|-------------|-----------------------------|----------------------|--|--|--|
| Protocol-agnostic     |                       |                     | Protocol-aware     |                              |                                |                     |             |                             |                      |  |  |  |
| Inter-packet<br>Times | Message<br>Timing     | Rate/<br>Throughput | Artificial<br>Loss | Message<br>(PDU)<br>Ordering | (Artificial)<br>Retransmission | Frame<br>Collisions | Temperature | Artificial<br>Reconnections | Artificial<br>Resets |  |  |  |

| Covert Storage Pattern                                                                              |          |                   |                 |                     |                     |                                  |                         |                      |                                                    |  |  |
|-----------------------------------------------------------------------------------------------------|----------|-------------------|-----------------|---------------------|---------------------|----------------------------------|-------------------------|----------------------|----------------------------------------------------|--|--|
| Modification of Non-Payload (Data in protocol-specific fields)  Modification of Payload (User Data) |          |                   |                 |                     |                     |                                  |                         |                      | ata)                                               |  |  |
| Structure Modifying Structure Preserving                                                            |          |                   |                 |                     | User-data Agnostic  |                                  | User-data Aware         |                      |                                                    |  |  |
| Size<br>Modulation                                                                                  | Sequence | Add<br>Redundancy | Random<br>Value | Value<br>Modulation | Reserved/<br>Unused | Payload Field<br>Size Modulation | User-data<br>Corruption | Modify<br>Redundancy | User-data Value<br>Modulation &<br>Reserved/Unused |  |  |



#### **5G New Radio**

- **RRC**: Procedures for establishment, configuration and management of radio link between base station and UE
- **SDAP**: Quality of Service (QoS) management
- **PDCP**: Merge of CP and UP payload as well as encryption and integrity protection
- RLC: Procedures for segmentation and retransmissions
- MAC: Procedures for random access and error correction
- PHY: Procedures for physical data transmission on uplink/downlink

User Plane (UP) Control Plane (CP)

**OSI Layer 3: Network Layer** 

Radio Resource Control (RRC)

**OSI Layer 2: Data Link Layer** 

Service Data Adaption Protocol (SDAP)

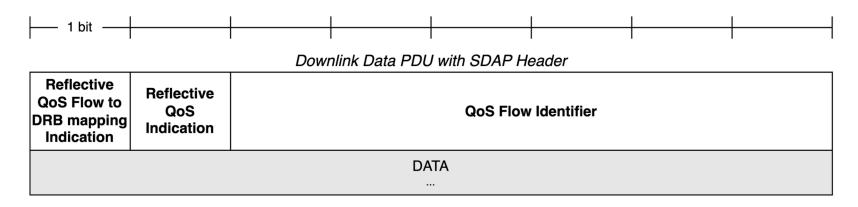
Packet Data Convergence Protocol (PDCP)

Radio Link Control (RLC)


Medium Access Control (MAC)

**OSI Layer 1: Physical Layer** 

Physical Layer (High PHY)


Physical Layer (Low PHY)

Radio Frequency (RF)



# **Protocol Analysis – Service Data Adaption Protocol (SDAP)**

- Header consists mostly of QoS Flow Identifier
- Only 1 reserved bit in header of uplink PDU
- SDAP is less suitable for hiding information → SDAP is not considered further



#### Uplink Data PDU with SDAP Header

| Data/Control | Reserved | QoS Flow Identifier |  |  |  |  |  |
|--------------|----------|---------------------|--|--|--|--|--|
|              | DATA     |                     |  |  |  |  |  |
|              |          |                     |  |  |  |  |  |

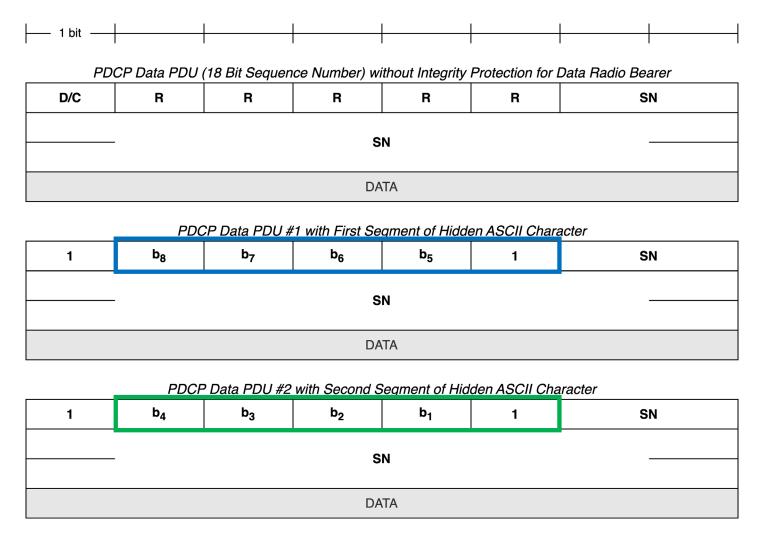


# **Protocol Analysis – Packet Data Convergence Protocol (PDCP)**

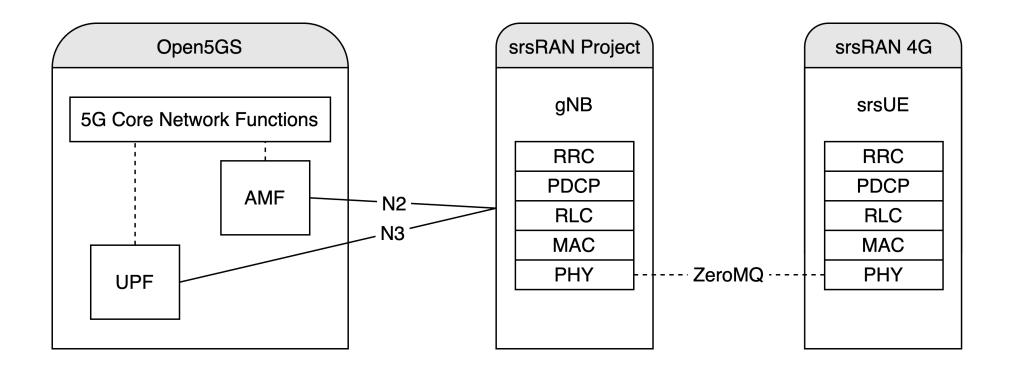
- Exploitation of Sequence Number is feasible → high risk of detection
- Exploitation of MAC field is possbile, but only if integrity protection is configured by RRC
- PDCP has 5 reserved bits → good basis for hiding information

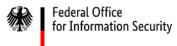
| 1 bit                                  |                           |          |          |          |          |            |             |  |  |
|----------------------------------------|---------------------------|----------|----------|----------|----------|------------|-------------|--|--|
| Data/Control                           | Reserved                  | Reserved | Reserved | Reserved | Reserved | PDCP Seque | ence Number |  |  |
|                                        | PDCP Sequence Number ———— |          |          |          |          |            |             |  |  |
| DATA<br>                               |                           |          |          |          |          |            |             |  |  |
| Message Authentication Code (optional) |                           |          |          |          |          |            |             |  |  |




# **Protocol Analysis – Radio Link Control (RLC)**

- RLC has plenty of header elements to exploit
- Sequence Number and Segment Offset can be utilized to encode covert data
   → most likely affects functionality → high risk of detection
- Header contains 2 reserved bits -> Could probably be used in addition to PDCP


| 1 bit                                         |             |                   |          |          |                     |  |  |  |  |
|-----------------------------------------------|-------------|-------------------|----------|----------|---------------------|--|--|--|--|
| Data/Control                                  | Polling Bit | Segmentation Info | Reserved | Reserved | RLC Sequence Number |  |  |  |  |
| RLC Sequence Number ————                      |             |                   |          |          |                     |  |  |  |  |
| Segment Offset (applied if not first segment) |             |                   |          |          |                     |  |  |  |  |
| DATA                                          |             |                   |          |          |                     |  |  |  |  |
|                                               |             |                   |          |          |                     |  |  |  |  |



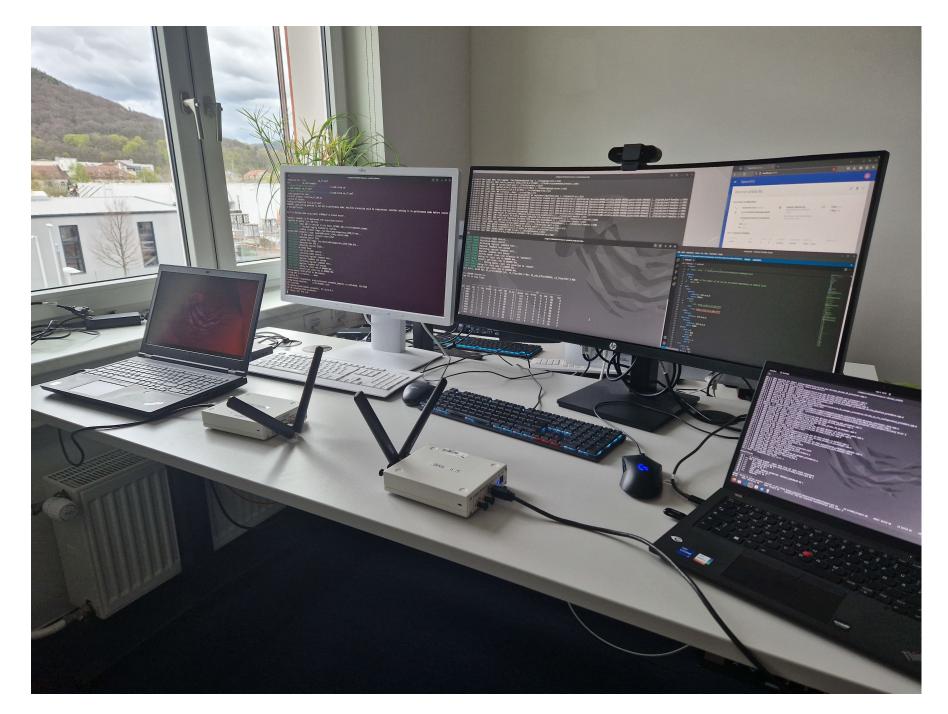

### **Transmission of ASCII Characters over a Covert Channel**



# **Proof of Concept with Virtualized Test Environment**

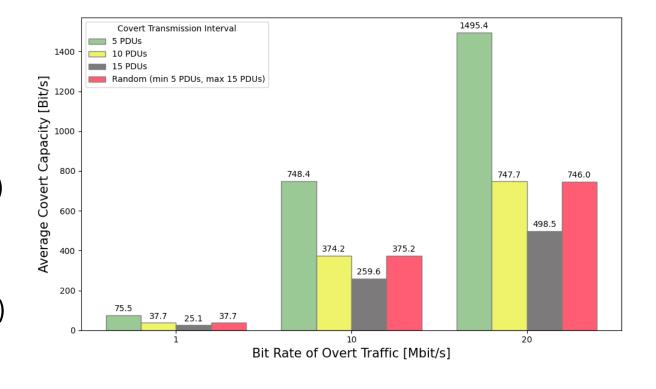





#### **Covert Sender**

```
10
         if (covert timer == 10) {
11
             covert timer = 1;
12
             if (input.length() > 0) {
13
                 if (transmitted segment ctr % 2 == 0) {
                     // 0xf0 = 11110000
14
15
                     char_segment = 0xf0 & input[0];
                     // 0x84 = 10000100
16
17
                     first_header_byte = 0x84 | (char_segment >> 1);
18
                 } else {
                     // 0x0f = 00001111
19
20
                     char_segment = 0x0f & input[0];
21
                     // 0x84 = 10000100
                     first_header_byte = 0x84 | (char_segment << 3);</pre>
23
                     input.erase(0,1);
24
25
                 transmitted_segment_ctr++;
26
             }
27
         } else {
28
             covert_timer++;
29
         }
30
31
         // Hiding method is applied if PDU is Data PDU
32
         if (is drb()) {
33
             hdr_writer.append(first_header_byte);
34
         } else {
35
             hdr_writer.append(0x00);
36
```

#### **Covert Receiver**


```
// File: srsRAN_Project/lib/pdcp/pdcp_entity_rx.cpp
    bool pdcp entity rx::read data pdu header(pdcp data pdu header& hdr, const
        byte_buffer_chain& buf) const
3
    {
 4
 5
         byte buffer chain::const iterator buf it = buf.begin();
        // 0x04 = 00000100
 8
        if ((*buf it & 0x04U) == 4) {
             if (received_segment_ctr % 2 == 0) {
10
                // 0x78 = 01111000
                 uint8 t covert data bits = (*buf it & 0x78U) << 1;</pre>
11
12
                 assembled_byte = covert_data_bits;
13
             } else {
                // 0x78 = 01111000
14
15
                 uint8_t covert_data_bits = (*buf_it & 0x78U) >> 3;
                 assembled_byte |= covert_data_bits;
16
17
                 char assembled_char = (char) assembled_byte;
18
                 assembled_byte = 0;
19
                 output += assembled_char;
                 write to file(output_file ,assembled_char);
20
21
22
             received_segment_ctr++;
23
        }
24
25
```





#### **Evaluation of the Covert Channel within PDCP**

- Reliability is ensured by PDCP
  - → Robust against normal channel noise
- Covert capacity depends on:
  - Bandwidth of overt traffic (proportional)
  - Interval of covert transmission (proportional)
- Randomized intervals improve undetectability
- Practical example:
   Broadband transmission (20 Mbps, 60 seconds)
   → 815 words (5600 characters)





#### **Detection of the Covert Channel**

- 1) Detection within base station or User Equipment
  - Unrestricted access to protocol layer
  - Logging or network analyzer
- 2) Detection on air interface
  - Only possible if encryption is not activated
  - Knowledge of radio parameters necessary
  - Not possible over a large area

```
> Frame 107: 176 bytes on wire (1408 bits), 176 bytes captured (1408 bits)
 DLT: 149, Payload: udp (User Datagram Protocol)
 User Datagram Protocol, Src Port: 48879, Dst Port: 57005
 MAC-NR DL-SCH (LCID:4 90 bytes) (Padding 52 bytes)
 > [Context (RNTI=17921)]
  > Subheader: (LCID:4 90 bytes)
   RLC-NR [DL] [AM] DRB:1 [DATA] (P) SN=12
       [Context]
      AM Header (P) SN=12
      AM Data: c4000c4500005403fc00004001624c0a2d00010a2d00070000bc053a4b000df084046500...
                           DRB-1 (direction=Downlink, plane=User)]

   [Configuration:
            [Direction: Downlink (1)]
            [Plane: User (2)]
            [Bearer type: DCCH (1)]
            [Bearer Id: 1]
            [Seqnum length: 18]
            [MAC-I Present: False]
            [SDAP header: Not Present]
            [ROHC Compression: False]
       > [UE Security (ciphering=NEA0 (NULL), integrity=NIA2 (AES))]
         1... = PDU Type: Data PDU
        .100 01.. = Reserved: 0x11
         [Expert Info (Error/Malformed): Reserved bits have value 0x11 - should be 0x0]
               [Reserved bits have value 0x11 - should be 0x0]
              [Severity level: Error]
               [Group: Malformed]
         .... ..00 0000 0000 0000 1100 = Seq Num: 12
       > [Sequence Analysis - OK]
       > Internet Protocol Version 4, Src: 10.45.0.1, Dst: 10.45.0.7
       > Internet Control Message Protocol
  > Subheader: (Padding 52 bytes)
```

#### **How to Prevent the Covert Channel?**

3GPP TS 38.323 version 17.5.0 Release 17

39

ETSI TS 138 323 V17.5.0 (2023-07)

6.3.6 R

Length: 1 bit

Reserved. In this version of the specification reserved bits shall be set to 0. Reserved bits shall be ignored by the receiver.



# **But what about Open RAN?**

- New interfaces and components in O-RAN with Application Protocols, Service Models and Message Flows (OFH, A1, E2, O1, O2, Y1, ...)
- → Many possibilities to create covert channels!
- Example: Reserved bits in OFH

5.1.3.1.2 ecpriReserved (eCPRI reserved)

**Description:** This parameter is reserved for eCPRI future use. NOTE: This parameter is part of the eCPRI common

header.

Value range: {001b-111b=Reserved}.

Type: unsigned integer

Field length: 3 bits.

Default Value: 000b (reserved fields should always be set to all zeros).

Table 5-1 : eCPRI Transport Header Field Definitions

| Section Type : any |   |         |   |   |   |   |         |               |  |  |
|--------------------|---|---------|---|---|---|---|---------|---------------|--|--|
| 0 (msb)            | 1 | 2       | 3 | 4 | 5 | 6 | 7 (lsb) | # of<br>bytes |  |  |
|                    | 1 | Octet 1 |   |   |   |   |         |               |  |  |
|                    | 1 | Octet 2 |   |   |   |   |         |               |  |  |
|                    | 2 | Octet 3 |   |   |   |   |         |               |  |  |
|                    | 2 | Octet 5 |   |   |   |   |         |               |  |  |
|                    | 2 | Octet 7 |   |   |   |   |         |               |  |  |



#### Good News: There is a test! Bad News: ...?

Test Name: TC\_FH\_U-PLANE\_MALFORMED\_PACKET

#### Test description and applicability

**Purpose**: The purpose of this test is to verify the O-DU's ability to handle and reject malformed or invalid user plane packets.

#### Test setup and configuration

• A valid eCPRI connection between the O-RU and O-DU.

#### Test procedure

- 1. Generate a user plane packet with invalid or malformed data, such as incorrect headers, corrupted payload, or unsupported formats.
- 2. Transmit the malformed packet over the eCPRI.
- 3. Monitor the O-DU's response and behaviour.
- 4. Verify that the O-DU identifies and rejects the malformed packet.
- 5. Observe the impact on the O-DU, such as error messages, logging, or abnormal behavior.


#### **Expected Results**

- The O-DU detects and rejects malformed or invalid user plane packets.
- It handles the rejection gracefully without affecting normal operation.
- Appropriate error messages or log entries are generated.



# **Security through Certification**

- Certification of critical network equipment in public 5G networks
  - Required by German law (§165 TKG) as of January 2026
  - By an authorized certification body → BSI
- Technical Guideline TR-03163: Security in Telecommunications Infrastructure
  - → Selection of authorized certification schemes
- NESAS Cybersecurity Certification Scheme German Implementation (CCS-GI)
  - Based on GSMA Network Equipment Security Assurance Scheme (NESAS)
- Security Assurance Specifications (SCAS)
  - Security Tests specified by 3GPP (TS 33.xxx)
  - Available for many 4G and 5G network functions







## **Summary**

- Covert channels are feasible in 5G
- Exploitation of PDCP is the best option on the 5G air interface → Covert capacity can be high
- O-RAN can be exploited, too! → O-RAN Alliance needs to extend and clarify their security tests
- Enhancements and (practical) verification of Security Assurance Tests by BSI
  - → Basis for certification of commercial 5G components
    - 1. Assurance of security measures
    - 2. Reduction of implementation flaws
- BSI continues standardization work in 3GPP, ETSI and GSMA NESAS Group
  - → Current focus on enhancements of SCAS



# **Any Questions?**

#### Contact

Markus Walter
Division S 31 – Security for 5G/6G Infrastructure

markus.walter@bsi.bund.de referat-s31@bsi.bund.de

Federal Office for Information Security (BSI) Hüttenstr. 14 01705 Freital www.bsi.bund.de

# Deutschland **Digital•Sicher•BSI•**



