

Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Network Digital Twin Abstraction is All you Need

Ehsan Tohidi, Sustainable and Modular Networks (SMN)

Mobile Capex is Outpacing Mobile Revenue¹

Why Digital Twins? Why Now?

- Digital Twin facilitators
 - Al
 - Computation Power

Data

- Evolving History
 - One of the earliest uses of digital twins was by
 - NASA in dev Apollo 13 m
- They simulate what could happen in the network, not just what will happen
- Subsequent medical field agriculture,
- Network Digital Twins enable reasoning about possibilities and alternative scenarios, not certainties
- (NDT), among others.
- Siemens closed a \$10B acquisition of Altair.

- Reduce design time and cost
- Predictive maintenance
- Data generation & collection
- Higher efficiency
- Counterfactual / "what-if" analysis

Developed Network Digital Twin Pillars

Werner-von-Siemens Centre

Configuration System Architecture for PSCell Handover* Inter-ght8 HO proposal Pooter | PSC See | PSC Se

Scenario

Performance Visualization

Developed NDT Usability

A network simulator where we understand the approximations in the model, possess control over customization and development, have enhanced performance, reduced complexity, and can adjust to the needs and use cases.

Conflict Management

ORAN Digital Twin: Conflict Management in Multi-Vendor O-RAN Environments

- Multi-vendor networks with xApps pursuing different optimization goals can create conflicts (e.g., load balancing vs. energy efficiency).
- Central coordination is needed to manage these conflicts effectively.

Some New Questions for the NDT

- How does the network scale? (e.g., Berlin, Germany)
- What is the impact of a specific algorithm?
 (e.g., new handover strategy)
- Where are opportunities for customized services? (e.g., network slicing)
- Which areas of the network require attention or optimization?

All Models are wrong, but some are useful (Right Level of) Abstraction is All You Need

Capturing the characteristics

Scalability

Multi-Level NDT

Real Network

Offline Calibration

- Network side accumulated data
- Component in the loop calibration

Real Time (e.g., API for Campus networks)

Digital Twin

Abstraction

Time, Space, Users, and Functions

Overview

- Broad Geographic Segmentation
- Preliminary Performance Assessment
- Identify Potential Bottlenecks
- **Key questions to initiate**

Overview

- Semi Broad Geographic Segmentation
- "Middle" level Assessment Accuracy
- Feedback for High Level
- Key questions to initiate

Overview

- Specific area of interest
- Detailed ns-3-based
- Feedback for Mid-Level
- Develop models about KPIs based on network parameters

Multi Level Simulator Interactions Across Abstraction Levels

Network Load Monitoring

High-Level NDT Network Load Monitoring

- High-level simulator uses statistical channel models for general performance estimation
- Medium-level simulator incorporates environmentspecific details, including:
 - Line-of-Sight (LOS) vs. Non-Line-of-Sight (NLOS)
 - Indoor vs. Outdoor
 - Spatial distribution of users
- Active learning engine enhances sampling efficiency and reduces simulation overhead
- Further coupling with real world measurements possible

High-Level NDT Load Simulation Throughout the Day

UE distribution	RMa	UMa	UMi
Morning	2%	30%	68%
Noon	1%	9%	90%
Afternoon	2%	13%	85%
Night	0%	10%	90%

	Morning	Noon	Afternoon	Night
#UEs	25000	38000	30000	18000
Demand	10 Kbps	15 Kbps	30 Kbps	60 Mbps

High-Level NDT

Medium-Level Feedback and Extrapolation: LOS ratio

LOS ratio

LOS ratio kriging

Ground truth LOS ratio

High-Medium Level NDT Active Learning of LOS-Ratios

LOS-Ratio KLD

Handover Analysis

Medium-Low Level NDT Handover Analysis

Medium-level simulator:

- High fidelity mobility and channel models
- High level system level models, i.e., HO, scheduling

Low-level simulator:

- Packet level traffic simulation
- Full stack E2E network simulation

Active learning engine

 Diversity sampling via clustering and parameter uncertainty prediction

Medium-Low Level NDT Handover Analysis

Medium-level NDT

Low-level NDT

Medium-Low Level NDT Handover Analysis

NDT Calibration

If you want to go fast, go alone. If you want to go far, go together!

Slawomir Stanczak

Patrick Agostini

Sven Haesloop

Vahid Rajabi

Hammad Zafar

Arndt Busse

Heiko Lehmann

Martin Stahn

Matthias Weh

Ns3 Playground Project

Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Network Digital Twin: A New Way to Observe and Optimize

Thank you! Questions?

Fraunhofer Heinrich Hertz Institut (HHI) Einsteinufer 37 10587 Berlin ehsan.tohidi@hhi.fraunhofer.de www.hhi.fraunhofer.de

