

Network Digital Twins Concepts, Requirements, and Applications

Dr. Martin Stahn | BOWW 2025 | 09.09.2025

GROUP TECHNOLOGY

(Network) Digital Twins – Short Introduction

- Future of telecommunication networks
- Exploring behavior of agents in the network
- → Digital Twin
- Network Digital Twins
- Buzz word
- Planning tools, simulators
- What about a personal digital twin?

Future Networks & Autonomy

- Heterogeneous agents
- g_i
- Network (architecture & topology)
- Openness required

Can even be extended with agents in the UE and air interface (RIS).

- Self-organization: synergies, oscillations, conflicts
- Operator policies {OP}

Network Digital Twins – Core Properties

- Network → Snapshot
- Propagation / Evolution engine
- → Moving forward in time → Prediction
- Decision in the network
- Update engine / continuous coupling

Snapshot & Update Network Evolution Prediction

Should be more resource efficient than an exact twin.

Nothing is the network digital twin.

Scales in the network (10¹¹)

Time

Space

• ... and more

Corollary

A Network Digital Twin can never be a monolithic, "one size fits all" system.

It will be a modular system which provides the elements to be combined for answering well-posed questions.

Well-Posed Problems

Objective:

- coverage, slicing, energy, ...
- plan, operate, optimize, ...

Constraints: architecture, resources, topology, service, ...

Domains: world, site, RAN, core, transport, E2E, ...

Scales and resolution: space, time, ...

- → Data & tools
- → Network Digital Twin

Example

Estimate load-dependent energy consumption

- *Google maps Area, norm week
 - Abstraction → architecture graph
 - → Load distribution
 - → Energy consumption

Everything is <u>a</u> network digital twin.

- Emulators
- Simulators
- Planning tools
- Agents
- NOC

Every function interacting with the network contains an expectation of how the network might react.

This could be considered a network digital twin.

NDTs - Classifications

- Specific purpose
- Often implicitly contained

- Classification rather arbitrary
- Heuristic vs Al
 - What-if questions
 - Detailed "heavy" solutions
- Similarities to foundation model
- What to do with all the twins?

- Limited resources
- Run-time constraints

- Where to abstract?
- Not use case specific

NDTs – Further aspects & Requirements

- Modular system
- Multilevel simulation
- Abstraction

- **Data:** quality, quantity, scenario generation
- Calibration
- Correction
- **Error analysis:** uncertainty quantification, error propagation, statistical bounds

Pre-emptive handover

- Private network
- Bosch Hildesheim
- CampusOS
- Priority Users
- Live data
- Enrichment information
- Open interfaces
- Prediction
- Decision

Location assignment

Determine the optimal location for functionalities

under performance constraints.

$$\begin{array}{ll} \min & \mathrm{cost}(L) \\ \mathrm{s.t.} & \mathrm{resource}(L) & \leq \mathrm{res.} \ \mathrm{bounds} \\ & \mathrm{latency}(L) & \leq \mathrm{lat.} \ \mathrm{bounds} \\ & \mathrm{traffic}(L) & \leq \mathrm{capacity} \\ & \mathrm{more} \ \mathrm{constraints} \end{array}$$

Offline or online

Mathematical modelling

Simulators

NDTs & Conflict Resolution

Detection and mitigation is not good enough.

Conflict Resolution

- Priority list
- Center of mass
- Mathematical optimization
- Agent consensus

Chaotic dynamical system

Network digital twin enables sophisticated solutions.

Drift to harmony or encouraging extreme behavior?

min dist
$$(y, \{OP\})$$

s.t. $y = h(x^*)$
 $x^* = \sum_i \lambda_i \hat{x}_i$

Thank you for your attention.