Reimagine the Network

What is Reimagine the Network?

An intelligent autonomous network using Al

... that dynamically adjusts to customer needs (human-centered network)

... based on radical simplification.

halve the cost

scale resource consumption with usage

&

open up new business opportunities

intelligent user multichannel equipment access ntelligent Use \bigcirc 10 Intent-Based ď programmable common network core (1) Artificial ntelligence </> federation service aware with partners communication ReImagine the Network - BOWW

Solution Elements

Objectives

Reimagine the Network

Architecture Principles

hardware for performance

software for flexibility

Al drives design & optimization

share & reuse resources

interconnect partners via IP

optimize resource utilization via LCM

make networks programmable

enable service awareness

zero-touch automation

keep it super simple

Key Concepts

Center of Focus: Human Intent

- A Intelligent UE captures context and human intent
- B Simplified integration of different access technologies via Plain IP
- C Programable Network for dynamically creating a suitable communication environment
- Dynamic provisioning and Integration of 3rd party value added services based on simplified lifecycle model
- One autonomous control plane to coordinate the Intent DrivenProduction

Intent Driven Production

Customer intent is captured and

distilled via the Real-Time Network

Designer (RTND) into a service

orchestrator and controllers. These all

support a harmonized lifecycle model.

Real-Time Network Designer

blueprint which is provisioned via an

Access Controllers

resource

config.

resource config.

service blueprint

Network Controllers

Orchestrator

resource config.

(3rd Party) Controllers

resources are dynamically provisioned and configured

consumer environment

multi access

programable network

(3rd party) services

Plain IP access

Features & Benefits **⊘**€ **⑤**

Principle: Review the way we produce services & functionalities provided. Is it still needed? Can we simplify it?

Observation: Extensive use of tunneling in telco networks

- Generates overhead
- Couples access and core
- Creates telco specifics → less vendors, higher price

Reimagined approach:

- Access Nodes terminate plain IP, without tunneling or encapsulation
- Access node can be of any kind of layer 1 or layer 2 technology
- UEs connect to access nodes & communicates via plain IP
- Common, unified control plane is established via IP between UE & core (e.g. for authentication)

Affected functionality:

- Persistent IP address during mobility
 - Not needed for many use cases (static, nomadic) and many applications
 - Mobility anchor (in case needed) will be left to the application
- Charging, legal intercept, policy enforcement, ... are for further study

Benefits:

- Significant complexity reduction
- Allows for easy integration of new access technologies and standards

elmagine the Network - BOWW

Plain IP control and user plane

Objectives:

- Harmonization / Simplification
- New ecosystem based on Internet principles
- Use all available resources

The Lab – A sandbox for the networks of tomorrow

Objective: The Re-Imagine Lab is our innovation sandbox—built to prototype, test, and validate ideas around, programmable, intelligent, and scalable networks.

Strategic Aims:

- Accelerate innovation cycles by enabling rapid and collaborative prototyping.
- Provide a vendor-agnostic, neutral, environment for testing.
- Open feedback loop within DT units and externals.
- Integrate new hardware and technologies to overcome existing "tech gaps".

Simulation Environment Architecture

Where we stand vs. What's next

Focus Areas

- i. SRv6 integration with 5G User Plane
- ii. SRv6 packet processing network logic
- iii. Plain IP (without GTP tunneling) transport analysis

Next Steps

- iv. Add Mobility and handover scenarios
- v. Integration with real Hardware
- vi. Further collaboration with vendors
- vii. Integration of the E2E LCM
- viii. Implementation of the Intelligent Scheduler

Contact:
GTLeadArchitects
@mg.telekom.de

Back-up

Abbreviations

3GPP Standardization Body

- Al Artificial Intelligence

BSS Business Support Systems

- E2E End-to-End

• GTP GPRS (General Packet Radio Service) Tunnelling Protocol used in mobile networks

- HDA Horizontal Digital Architecture

Lifecycle Management, i.e. the creation, configuration, activation, ... of a production element

NDT Network Digital Twin

NTN Non-Terrestrial Networks

OSS Operations Support Systems

Reimagine the Network

RTND Realtime Network Designer

SRv6 Segment Routing IP Version 6

TPM Telekom Production Model

UE
 User Equipment, e.g. a mobile device

• HTWK HTWK Leipzig – Hochschule für Technik, Wirtschaft und Kultur