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Digital Twin assisted Al for Sustainable Radio Access Networks: Research M

¥ AUML

@V DT assisted Al
N - DT  Digital Twin
Collect A " Al Artificial Intelligence
ML Machine Learning

e Data-driven Digital Twin (DT) creation for centralized, local, and distributed Al
e Design and conduct large-scale measurement campaigns
o Distributed cooperative reinforcement learning for online resource optimization

e Preserve explainability across all DTs
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Measurement Campaign, Drive-test Dataset Q

",

o

o Passive scanner and phones
e approx. 100km?

® approx. 30k locations

e Urban and suburban

e LTE: 800 MHz, 1.8 GHz,
2.6 GHz

e 5G: 2.1 GHz, 3.5 GHz
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Measurement Campaign, Drive-test Dataset M

e Passive scanner and phones
e approx. 100km?
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The Network Twin

e Timing advance (TA) based localization

o Other Candidates [ ;
® Probable Candidates a8 © Other Candidates

® Probable Candidates i

04

atenquelie: basemap at. o a0
00 .

TA-based posterior localization. Left: TA coverage with probable candidates. Middle: coarse grid posterior. Right: zoomed-in
estimate near MAP.

e Estimated sector orientations (Azimuth) - weighted centroids

e Estimated antenna heights
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Vienna 3D City Model M

e Publicly available, provided by Stadvermessung Wien

e We provide terrain and building data

3D building model 3D city model (building and terrain combined)
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https://www.wien.gv.at/stadtentwicklung/stadtvermessung/

Currently Available: LTE Subset

Lab for

Operator A
sk {

Operator B Operator C
g1 [ o e tuking
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LTE Subset - click me

LTE subset of three MNOs

Subset covers urban and suburban region

Network twins include estimated cell information of 6 most frequent base stations per MNO
Building and terrain data is provided

Python scripts:

— TA-based base station localization
— Deep learning network planner
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https://dataset.nt.tuwien.ac.at/vienna-4g-5g

Minimization of Drive Tests

o Network-side data source, network as seen from UEs
e Some of our use cases:

— Coverage analysis in rural areas
— Training of ML models
— Traffic models

— Cross-validation of different data sources
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DT Based Radio Planner - Propagation Environment from Vienna 3D City Model

o Rasterized height profile with 1 m resolution:

Fbuﬂdings<‘) ... building height Felevation () - - . elevation ®  xue, UE Position
® xss, BS Position

Fenv (+) = Felevation (") + Fbuildings(')

o Propagation environment for measurement i:

X / < s, perpendicular coord
\z
dp, . . . horizontal distance to BS dy . . . vertical distance to BS
N
fenv(d, 5), local environment

FOR {1. fenw (d,0) < fap (d) for d € (0, dy]

geo 0, else
fap(d) = dy/dy - d+ hyg ... profile of direct path
o Binary indicator for 3GPP Urban (UMa) model: Local Env, £, (d, s)
gLoS - - - LOS model INLOS - - - NLOS model
9 = 18- 9108 (m‘(jﬁa) + (1 - lge)o) - Inlos (m‘(fn)ja) Ly fendd O localeny
fupld), direct path -~ |
UMa Performance: 9.77 dB MAE T :

(] L. Eller et al., " A Deep Learning Network Planner: Propagation Modeling Using Real-World Measurements and a 3D City Model", IEEE Access.
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Deep Learning Formulation & Different Input Encodings

o Metadata m and local environment E, . as inputs:

"o
Y4B = 9gnn ([Eloc, m]; Onn) m = I:dhr dy, f, ¢h , @y s Uloss Ynloss lgeo]

m DENSE gaonse() Jan
Include antenna parameters through UMa — separated from propagation. '\/
e Three variants for propagation environment Ej:
ConvNet Full Surroundings (FS) ... propagation environment in surroundings
ConvNet Direct Path (DP) ... sequence input of profile along direct path
RefNet Metadata (MD) ... UMa equivalent with only lgeo indicator

Propagation Environment

fenv(d, 0), local env

fap(d), direct path /"T
- i

I

I

ConvNet DP
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Ensuring Proper Generalization Analysis

e Network planning requires generalization — spatially separated Ttrain and Ttest sets.

e Three-Fold cross validation with 500 m spatial binning and 100 m buffer distance.

+ Taining Data + Training Data
* Test Data

¢

N

¢ £
IS INE N
NEES R SRR
N o) fritad SN om ) AR NRER A\
1y 9PN T/ PN Ty DY
[ gl ST 0 a3 O e X33
=T 2 LP3 DT < DI Y ~—7 XgR | xR
7 s e, 7wl
i Bl (RGN T e, R BHNG R
o gt R X oo RYRNT i g §X

Tiain 204 Ty Tiihn a0 Ticlh Trin and T2,

train test
Measurement position for Tirain and Tiest folds.
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Real-World Performance Evaluation

Results over all folds 7.\ with j € {0, 1,2}

test

14
mmm ConvNet Full Surroundings mmm ReferenceNet Metadata
12 mmm ConvNet Direct Path mmm 3GPP UMa Geometric Indicator
10 9.77
o g
ke
= 6.88
e 6.12
56 5.59
4
2
0

MAE [dB]

e UMa suffers from abstractions in form of binary indicator — high error in transition areas.

o Consistent error reduction by using environmental data with ConviNet FS performing best.
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Comparing Learned Propagation Mechanisms

Scenario: Pix = 15 dBm, hpg =30m, f = 1800 MHz, ¢gsec,v =0, Uniform Horizontal Pattern

-100 -100 -100

110 110 -110

(m (m) (m

RefNet MD Prediction [dBm] ConvNet DP Prediction [dBm] ConvNet FS Prediction [dBm]
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Differentiable Throughput Model M

Tij : ; ti Soft Cell Assignment:
i ! a;j €[0,1] ... assignment probability
i 3 u; ... number of connected UEs
i i Model-Based
i L C D Traffic Patterns:
1\ i Data-Driven o (uj) ... active UEs mapping
[I— A(aj) €[0,1] ... cell load mapping
Expression for Shared End-User Throughput: Spectral Efficiency:
c 8;,j ... RS-SINR for each 4, j combination
t; = Brs - NrB Z i 1(5i4) 1 (ss,5) --. spectral efficiency mapping
4 1+ a(uy)
Jj=1
NRB ... resource blocks BRrp ... resource block bandwidth

L. Eller et al., " A Differentiable Throughput Model for Load-Aware Cellular Network Optimization Through Gradient Descent”, IEEE Access.
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Calibration to Traffic Patterns from Monitoring Data

8 BN Monitoring Data
|

s Differentiable Mapping
[V 0.8
w 6
=] —— High Demand oy
.g ---- Medium Demand < 0.6
&
&4 Low Demand peT: 2
5 42277557 =
N gt T 04
E?2 =
Z: _.——-.—_74""—'" 0.2 7 -==- Monitoring Data
0 —— Differentiable Mapping
0.0
0 50 100 150 200 0 2 4 ) 6 8
Number of connected UEs, u; Number of active UEs, a;
Figure: Active UEs Mapping: o (u;) Figure: Cell-Load Mapping: A (c;)

Describes average behavior in network, while ensuring the adequate level of abstraction
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Load-Unaware Optimization Q

Real-world deployment with C' = 147 cells. (thresh) — 19 MBit/s, Transmit power: p; € [—15,15] dBm
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g s
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~10 0
4000 m 4000 m
Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 0 Outage Ratio: Loutage = 0.46
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Load-Unaware Optimization w

Real-world deployment with C' = 147 cells. (thresh) — 19 MBit/s, Transmit power: p; € [—15,15] dBm

-700
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£
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g s
-300
-5
» 200
5 - 100
~10 0
4000 m 4000 m
Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 5 Outage Ratio: Loutage = 0.40
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Load-Unaware Optimization w

Real-world deployment with C' = 147 cells. (thresh) — 19 MBit/s, Transmit power: p; € [—15,15] dBm

-700
-600

-500

£
g 10 3 400
g s
-300
-5
Lo - 200
s - 100
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4000 m 4000 m
Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 20 Outage Ratio: Loutage = 0.40
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Load-Unaware Optimization w

Real-world deployment with C' = 147 cells. (thresh) — 19 MBit/s, Transmit power: p; € [—15,15] dBm
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5 - 100
~10 0
4000 m 4000 m
Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 50 Outage Ratio: Loutage = 0.41
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Gradient Descent-Based Transmit Power Optimization Q

Real-world deployment with C' = 147 cells. gthresh) — 10 MBit/s, Transmit power: p; € [—15,15] dBm
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Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 0 Outage Ratio: Loutage = 0.46
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Gradient Descent-Based Transmit Power Optimization Q

Real-world deployment with C' = 147 cells. gthresh) — 10 MBit/s, Transmit power: p; € [—15,15] dBm

-700
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S S
- 300
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-10 0
4000 m 4000 m
Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 5 Outage Ratio: Loutage = 0.22
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Gradient Descent-Based Transmit Power Optimization Q

Real-world deployment with C' = 147 cells. gthresh) — 10 MBit/s, Transmit power: p; € [—15,15] dBm
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4000 m 4000 m
Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 20 Outage Ratio: Loutage = 0.15
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Gradient Descent-Based Transmit Power Optimization M

Real-world deployment with C' = 147 cells. gthresh) — 10 MBit/s, Transmit power: p; € [—15,15] dBm

-700
-600

-500

£
; 10 s - 400
g S
-300
-5
Lo - 200
_5 - 100
-10 0
4000 m 4000 m
Interference: RS-SINR, [dB] Congestion: UEs in same cell, [#]
Optimization Step = 50 Outage Ratio: Loutage = 0.15

Proposed objective adequately balances interference while avoiding overload cells
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Safe Online Network Optimization

e Tightly integrated hybrid optimization framework![!]:
— Monte Carlo Tree Search (MCTS) agent
— Network twin providing domain knowledge
— Interaction through reference solution

Network digital twin

Model-based
solution

e Problem Formulation & System Model: ‘;\'m";‘a'f;"g{
Cells: ¢ ={1,2,...,C} [
Actions: a = [a1,a2,...,ac] ' MB-MCTS
solution
UEs: U = {1,2,...,U} o
-
Throughput: t = [t1,t2,...,ty] -
Ny :
SN t/
a® = argmin Epg.q [£(8)]
a
Target area
[LIL. Eller et al., "Safe Online Mobile Network Optimization through Digital Proposed Optimization Framework

Twin-Enhanced Monte Carlo Tree Search”. In IEEE Transactions on Cognitive
Communications and Networking, 2025.
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Safe Online Network Optimization

e Optimize downtilt for C = 10 cells

e Misspecified Twin: UE distribution, propagation conditions

w0
&

TR

w
=1

S
&

o
S

-==- Baseline Solution from Gradient Descent

Baseline Solution from Gradient Descent
~—— Vanilla MCTS (Uniform Prior, Random Rollout)

=-=-=-- Misspecified Baseline Solution
Vanilla MCTS (Uniform Prior, Random Rollout)

Throughput, Geometric Mean, [MBit/s]
Throughput, Geometric Mean, [MBit/s]

24 24
~—— MB-MCTS (Expert Prior, Random Rollout) ~—— MB-MCTS (Expert Prior, Random Rollout)
—— MB-MCTS (Expert Prior, Gradient Rollout) —— MB-MCTS (Expert Prior, Gradient Rollout)
22 22
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Exploration Steps Exploration Steps
Optimization history perfectly specified twin Optimization history mismatched twin
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MDT-Based Evaluation of Antenna Tilt Changes M

e Goal: Al/ML controls physical entity
® Real-time data from the physical into the virtual entity required

o Parameter changes reflected by MDT?
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MDT-Based Evaluation of Antenna Tilt Changes

Goal: Al/ML controls physical entity

Real-time data from the physical into the virtual entity required
o Parameter changes reflected by MDT?

e Experiment:

— Electrical downtilt changed periodically over three months
— LTE 1800, two channels
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MDT-Based Evaluation of Antenna Tilt Changes

Tilt: 6°
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CD-Lab AIRAN in a Nutshell w

Digital Railroad Twin

Module A

Digital Campus Twin

Module B
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https://www.tuwien.at/etit/tc/en/christian-doppler-laboratory/digital-twin-assisted-ai-for-sustainable-radio-access-networks/
https://www.tuwien.at/etit/tc/en/christian-doppler-laboratory/digital-twin-assisted-ai-for-sustainable-radio-access-networks/presentations/dissimination-activity/
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Monte Carlo Tree Search for Network Optimization M

Turn optimization into a search tree a=[a1,a2,...,ac] Specifying the configuration for cell ¢ € C

s=1

s = [a1]

s = [a1, a2]

as

1. Selection Policy 2. Rollout Policy 3. Backup Step

Design expert selection and rollout policies using the digital twin — safe and accelerated exploration
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Simulations vs Real world measurements

® RSRP - Reference Signal Received Power (LTE)

e Comparison of pathloss models with RSRP
measurement

g & & =2
Received Power in dBm

e Empirical validation of ray tracing for predicting
signal strength in cellular networks

Shadowing Ray Tracing

A. Fastenbauer et al., “Comparison of Large-Scale Fading Models with RSRP Measurements” (Jun. 2024)

S. Schwarzmann, “Empirical validation of ray tracing for predicting signal strength in cellular networks” (Jun. 2024)

S. Dolezel, “Time Series Forecasting and Clustering Techniques for Cellular Network Performance for Predictive Load Management” (Sep. 2024)

K. Chmela, “Validation of Ray-Tracing Systems for Mobile Communication: Simulations and Field Measurements in one Vienna District” (Sep. 2024)
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Fusing DT with Simulations

e Digital Twin
— 3D city model (City of vienna),
— Material database (Raytracer),

— Network layout (Sendekataster), =50 : — messured
— Clutter data (CloudRF, ESA). 0 — taine
e Drive test railroads in Vienna e Py
T - N
e Simulation raytracing tool £
s -90 1 ——
b -100 '”J
-110
-120
o 50 100 150 200 250

measurement index

K. Guan et al., “Key technologies for wireless network digital twin towards smart railways” High-speed Railway (2024)
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